

MINISTRY OF ENVIRONMENT AND ENERGY

GREECE'S INFORMATIVE INVENTORY REPORT (IIR) 2024

Submission under the
UNECE Convention on
Long-range Transboundary
Air Pollution and
Directive (EU) 2016/2284 on the reduction of
national emissions of certain atmospheric
pollutants

ATHENS MARCH 2024

EXECUTIVE SUMMARY

ES.1 Reporting obligations under UNECE/LRTAP and Directive (EU) 2016/2284 (NEC Directive)

Greece's Informative Inventory Report (IIR) and the complete set of NFR tables (the latter are submitted in digital format only) represent Greece's official submission under the United Nations Economic Commission for Europe (UNECE) Convention on Long-rage Transboundary Air Pollution (LRTAP) and under Directive (EU) 2016/2284 (NEC Directive).

The Ministry of Environment and Energy (MEEN) is designated as single national entity with overall responsibility for CLRTAP/UNECE and NEC inventory. The preparation of the inventory is based on the existed National Greenhouse Gas Inventory System, after a streamlining effort of incorporating the processes of preparing emissions inventories into one. This report and NFR tables were prepared by the National Technical University of Athens (NTUA) / School of Chemical Engineering, which has the technical and scientific responsibility for the compilation of the annual inventory for all NFR sectors for the 2017 – 2024 submissions of CLRTAP/UNECE and NEC inventories.

As a Party to the UNECE/LRTAP Convention and under the NEC Directive, Greece is required to annually report data on emissions of air pollutants covered in the Convention and its Protocols:

- > main pollutants: nitrogen oxides (NOx), non-methane volatile organic compounds (NMVOC), sulphur oxides (SOx), ammonia (NH3) and carbon monoxide (CO);
- ➤ particulate matter (PM): primary PM (fine particulate matter (PM2.5) and coarse particulate matter (PM10);
- > priority heavy metals (HMs): lead (Pb), cadmium (Cd) and mercury (Hg);
- > persistent organic pollutants (POPs): polychlorinated dibenzodioxins/dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB) and polychlorinated bi-phenyls (PCBs).

From the 2017 submission onwards, Greece reports all pollutants included in the NFR14 reporting format from 1990 to the latest inventory year. Emissions of the years before 1990 were last updated and published in previous submissions (e.g. 2014 submission).

The Convention on Long-Range Transboundary Air Pollution (LRTAP) was ratified by Greece in 1983. The Convention has been extended by eight Protocols, of which Greece has ratified the 1994 Sulphur Protocol and the 1988 NOx Protocol:

✓ 1988 Sofia Protocol concerning the Control of Emissions of Nitrogen Oxides or their Transboundary Fluxes: This Protocol requires as a first step, to freeze emissions of

nitrogen oxides or their transboundary fluxes. The general reference year is 1987. The second step to the NOx Protocol requires the application of an effects-based approach to further reduce emissions of nitrogen compounds. Greece was successful in fulfilling the stabilisation target set out in the Protocol. As reported in previous submissions, the base year (1987) emissions are 340.89kt. It is concluded from this report and associated NFR tables that Greece since the year 2011 has been in compliance with the relevant provisions of the Protocol. Moreover, NOx emissions have a decreasing trend since 2007.

✓ The 1994 Oslo Protocol on Further Reduction of Sulphur Emissions: The Protocol sets emission ceilings until 2010 and beyond. In addition, Parties are required to take the most effective measures for the reduction of sulphur emissions, including, inter alia, measures to increase energy efficiency, the use of renewable energy, measures to reduce the sulphur content of fuels, and to apply best available control technologies. The Protocol also encourages the application of economic instruments for the adoption of cost-effective approaches to the reduction of sulphur emissions. Greece was successful in fulfilling the emission ceilings set out in the Protocol.

The IIR 2024 at hand complements the reported emission data by providing background information. It follows the template of the "Informative Inventory Report – IIR" as elaborated by the LRTAP Convention's "Task Force on Emission Inventories and Projections – TFEIP". The structure of this report follows closely the structure of Greece's National Inventory Report (NIR) submitted annually under the United Nations Framework Convention on Climate Change (UNFCCC) which includes a complete and comprehensive description of methodologies used for compilation of Greece's greenhouse gas inventory.

In addition, the report includes both detailed descriptions of methods, data sources and uncertainties and information on quality assurance and quality control (QA/QC) activities as well as analyses of emission trends.

The emission data presented in this report were compiled according to the revised 2016 Reporting Guidelines (ECE/EB.AIR.125) that were approved by the Executive Body for the UNECE/LRTAP Convention at its 36th session. The Guidelines also define the new format of reporting emission data (Nomenclature for Reporting – NFR (latest version of the templates 'NFR19 dated 18.11.2019)) as well as standards for providing supporting documentation which should ensure the transparency of the inventory.

The Greek inventory is complete with regard to reported gases, reported years and reported emissions from all sources, and also complete in terms of geographic coverage.

ES.2 Overview of emission trends

NOx emissions decreased from 410.41 kt in 1990 to 233.05 kt in 2022. The emissions in 2022 have been decreased by 43.2% and 50.9% compared to 1990 and 2005, respectively. This decrease is attributed to the increasing share of natural gas and RES technologies in energy mix; energy efficiency improvements of the conventional power production plants; and the renewal of vehicle fleet. Other reasons are the reduction of consumption of electricity and other fuels, due to the economic recession of the years after 2007. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

NMVOC emissions decreased from 319.49.01 kt in 1990 to 138.02 kt in 2022. The emissions in 2022 have been decreased by 56.8% and 59.0% compared to 1990 and 2005, respectively. This decrease is attributed to the implementation of the Directives 1999/13/EC, 2004/42/EC and 2010/75/EU on the limitation of emissions of volatile organic compounds due to the use of organic solvents; the Directives 94/63/EC and 2009/126/EC on the control of volatile organic compound emissions resulting from the storage and distribution of petrol; and the reduction of emissions in the road transport sector, due to the renewal of vehicle fleet. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

SOx emissions decreased from 511.85 kt in 1990 to 43.82 kt in 2022. The emissions in 2022 have been decreased by 91.4% and 92.0% compared to 1990 and 2005, respectively. The operation of desulphurisation plants at large power plants since 1998, the increasing share of RES technologies and NG for electricity production and the gradual phase-down of lignite-fired plants (it will be completed by 2028) resulted in the reduction of SO2 emissions from electricity generation. Reductions with respect to the sulphur content of liquid fossil fuels and the introduction of natural gas in the Greek energy system resulted in a reduction of SO2 emissions from manufacturing industry, transport and residential sectors.

NH3 emissions decreased from 95.71 kt in 1990 to 64.22 kt in 2022. The emissions in 2022 have been decreased by 32.9% and 19.8% compared to 1990 and 2005, respectively. The decreasing trend of NH3 emissions is mainly attributed to the decrease in animal population and the use of synthetic nitrogen fertilizers, which is due to the increase of organic farming and the impact of initiatives to promote good practice in fertilizer use.

PM2.5 emissions decreased from 60.47 kt in 1990 to 36.20 kt in 2022. The emissions in 2022 have been decreased by 40.1% and 46.1% compared to 1990 and 2005, respectively. This decrease is attributed to the increasing share of natural gas and RES technologies in energy mix; energy efficiency improvements of the conventional power production plants; and the renewal of vehicle fleet. Other reasons are the reduction of consumption of electricity and other fuels, due to the economic recession of the years after 2007. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

ES.3 Key categories

To determine key categories, a trend and a level assessment have been carried out, which resulted in 10 identified key categories for NOx; 17 for NMVOC; 7 for SOx; 9 for NH3; and 10 for PM2.5. In the following table the identified key categories are listed.

Table 1. Key categories per pollutant in Greece for air emissions 2019

Pollutant	Key categories		
NOx	1A1a, 1A2f, 1A2gviii, 1A3bi, 1A3bii, 1A3biii, 1A3dii, 1A4cii, 3Da1, and 3Da3		
NMVOC	1A1b, 1A3bi, 1A3bii, 1A3biii, 1A3biv, 1A3bv, 1A4bi, 1B1a, 1B2av, 2H2, 2D3a, 2D3d, 2D3g, 2D3h, 2D3i, 3B1a, and 3Da2a		
SOx	1A1a, 1A1b, 1A2gviii, 1A2f, 1A3biii, 1A3dii, and 1A4bi		
NH3	3B1a, 3B1b, 3B2, 3B4gi, 3B4gii, 3B4h, 3Da1, 3Da2a, and 3Da3		
PM2.5	1A1a, 1A3biii, 1A3bvi, 1A3dii, 1A4bi, 1A4cii, 2A5b, 2G, 3F, and 5C2		

ES.4 Recalculations in the inventory since the last submission

The recalculations compared to the previous submission (2023 submission) were driven by the results of the internal QA/QC checks and the recommendations of the 2022 NECD Comprehensive Review pursuant to the Directive on National Emissions Ceilings for certain Atmospheric Pollutants (Directive (EU) 2016/2284 or 'NECD'). Moreover, recalculations were also driven by internal QA/QC checks, ESD and UNFCCC reviews of the GHG inventory, in particular for the cases of air pollution emission source categories that are associated to the same activity data with GHG emission source categories.

The reasons for observed recalculations compared to previous submissions of NFR tables, can be classified as follows:

> Changes or refinements in methods.

- > Inclusion of new sources.
- > Allocation to another category.
- > Correction of errors.
- > Updated activity data.

ES.5 Improvement Process

An inventory improvement procedure is in place, which utilizes:

- a) the recommendations from NECD review reports;
- b) the findings of annual internal audits taken place by MEEN personnel; and
- c) the output of key category analysis, uncertainty analysis and QA/QC procedures;

as a basis to prioritize, plan and materialize future improvements and recalculations. Details on the resulted recalculations and improvements planned per source/sink category have been presented in the respective chapters (Chapters 3-6). Information regarding the implementation of 2023 NECD Review recommendations is presented in Table 7-1.

ES.6 Differences with other reporting obligations

NEC Directive (EU) 2016/2284 sets out national emission reduction commitments for the pollutants SO2, NOx, VOC, NH3 and PM2.5. Greece uses the national emission totals calculated on the basis of fuel sold for compliance assessment under the NEC Directive.

The annual greenhouse gas reporting under the UNFCCC and the Kyoto Protocoll also requires the reporting of indirect GHGs (NOx, CO, NMVOC) and SO2 emissions based on fuel sold. The national UNFCCC total includes only domestic aviation emissions (LTO and cruise). In contrast to UNFCCC requirements, in national totals under the NEC Directive and the LRTAP Convention only emissions during LTO procedure are taken into account, whereas emissions during cruise are calculated but considered as memo items.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	<i>أ</i>
ES.1 Reporting obligations under UNECE/LRTAP and Directive (EU) 2016/2284 (NEC Directive)	i
ES.2 Overview of emission trends	iii
ES.3 Key categories	iv
ES.4 Recalculations in the inventory since the last submission	iv
ES.5 Improvement Process	
ES.6 Differences with other reporting obligations	v
TABLE OF CONTENTS	vi
LIST OF TABLES	Xİ
LIST OF FIGURES	xiii
1. Introduction	
1.1 National inventory background	
1.2 Institutional, legal and procedural arrangements	
1.2.1 Roles and Responsibilities	17
1.2.1.1 Ministry of Environment and Energy	17
1.2.1.2 National Technical University of Athens (NTUA) School of Chemical Engi	neering
1.2.1.3 Government Ministries/ Government agencies	19
1.3 Inventory planning and preparation	
1.3.1 CLRTAP/UNECE and NEC inventory, data collection, processing and storage	
1.4 Brief general description of methodologies and data sources use 1.4.1 Emission factors	
1.4.2 Activity data	
1.5 Brief description of key categories	
1.5.1 General description	
1.5.3 Results of the Level and Trend Assessment (Approach 1)	
1.6 Information on the QA/QC plan including verification and treatr	
confidentiality issues where relevant	31
1.6.1 QA/QC procedures and verification activities	
1.7 General uncertainty evaluation	
1.7.1 Method used	
1.7.2 Data source	
1.7.3 Results of uncertainty estimation	
1.8 General assessment of the completeness	
2. Trends	40
2.1 Overview	40

2	.2 [escription and interpretation of emission trends by gas	. 40
	2.2.1	NOx	
	2.2.2	NMVOC	
	2.2.3	SOx	
	2.2.4 2.2.5	NH3	
	2.2.5	PM2.5 Pb	
3.		gy (NFR sector 1)	
		IFR 1.A Stationary Fuel Combustion Activities	
3	. . 1	General description	. 40 46
	3.1.		
	3.1.		
	3.1.		
	3.1.2		
	3.1.3		
	3.1.		
	3.1. 3.1.	- J	
	3.1.4	NFR 1.A.2 Manufacturing Industry and Combustion	
	3.1.5	NFR 1.A.3.e.1 Pipeline compressors	
	3.1.6	NFR 1.A.4 Other Sectors	
	3.1.7	Planned improvements	
	3.1.8	Recalculations	64
3	.2 N	IFR 1.A Mobile Fuel Combustion Activities	. 64
	3.2.1	NFR 1.A.3 Transport	
	3.2.2	NFR 1.A.3.a Aviation	
	3.2.3	NFR 1.A.3.b Road Transport	
	3.2.4	NFR 1.A.3.c Railways	
	3.2.5	NFR 1.A.3.d Navigation	
	3.2.6 3.2.7	NFR 1.A.5.b Other, Mobile (including military, land based and recreational boats) . Planned improvements	
	3.2.7	Recalculations	
_			
3	.3 N 3.3.1	IFR 1.B Fugitive Emissions Completeness	
	3.3.2	Key Categories	
	3.3.3	Uncertainty Assessment	
	3.3.4	NFR 1.B.1.a Coal mining and handling	
	3.3.5	NFR 1.B.2.a Oil, NFR 1.B.2.b Natural Gas and 1.B.2.c Venting and flaring	
	3.3.6	Planned improvements	86
	3.3.7	Recalculations	86
4.	IND	ISTRIAL PROCESSES AND PRODUCT USE (NFR SECTOR 2)	<i>87</i>
4	.1 S	ector overview	. 87
	4.1.1	Completeness	
	4.1.2	Key Categories	
	4.1.3	Uncertainty Assessment	
	4.1.4	Methodological issues	
4		IFR 2.A.1-2.A.5 Mineral Products	
	4.2.1	NFR 2.A.1	
	4.2.2 4.2.3	NFR 2.A.2 NFR 2.A.3	
		NFR 2.A.3	

4.2.5	5 NFR 2.A.5b	96
4.3	NFR 2.B Chemical Products	97
4.3.1		
4.3.2	NFR 2.B.2 Nitric Acid Production	97
4.3.3	NFR 2.B.10 Other Chemical Industry	97
4.4	NFR 2.C Metal Production	98
4.4.1		
4.4.2		
4.4.3	, ,	
4.4.4	·	
4.5	NFR 2.D.3-2.G Solvents and other Product use	100
4.5.1		
4.5.2		
4.5.3		
4.5.4		
4.5.5	3 3	
4.5.6		
4.5.7	5 ,	
4.5.8 4.5.9	<i>3</i>	
	NFR 2.D.3.i Other solvent use	
	5.9.2 Application of glues and adhesives	
	5.9.3 Preservation of wood	
4.5.1		
	5.10.1 Use of fireworks	
4.5	5.10.2 Tobacco combustion	114
4.5	5.10.3 Use of shoes	115
4.6	NFR 2.H Other processes	115
4.6.1	•	
4.6.2		
4.6.3	NFR 2.H.3 Other industrial processes	118
4.7	NFR 2.I Wood processing	119
4.8	NFR 2.J Production of POPs	
_		
4.9	NFR 2.K "Consumption of POPs and heavy metals (e.g.	
scient	ific equipment)"	
	NFR 2.L Other production, consumption, storage, trans	
handli	ing of bulk products	120
4.11	Planned improvements	120
4.12	Recalculations	
5. Agr	iculture (CRF sector 3)	121
5.1	Sector Overview	121
5.2	General description	121
5.2.1	Completeness	121
5.2.2		
5.2.3	,	
5.2.4	Methodology	124

5.3	B N	FR 3.B Manure Management	
	5.3.1	Methodological Issues	
	5.3.2	Activity data	
	5.3.3 5.3.4	Manure management systems per animal species	
	5.3. 4	Emissions from Cattle (3.B.1)	
	5.3.6	Emissions from Swine (3.B.3)	
	5.3.7	Emissions from Other livestoke (3.B.4.a, d, e, f and h)	
5	5.3.8	Emissions from Poultry (3.B.4.g)	132
5	5.3.9	Emissions from Other (Rabbits) (3.B.4.h)	
5.4		FR 3.D Crop production and agricultural soils	
	5.4.1	Methodological Issues	
	5.4.2 5.4.3	Activity data Emissions from Inorganic fertilizers (includes urea) (3.D.a.1)	
	5.4.4	Emissions from Organic fertilizers (3.D.a.2)	
	5.4.5	Emissions from Urine and dung deposited by grazing livestock (3.D.a.3)	
5	5.4.6	Emissions from Crop residues applied to soils (3.D.a.4)	
	5.4.7	Indirect emissions from managed soils (3.D.b)	
	5.4.8	Emissions from Farm-level agricultural operations including storage, handling ar	
		rt of agricultural products (3.D.c)	
	3 D d)	Emissions from Off-farm storage, handling and transport of bulk agricultural pro	
•	5.4.10	Emissions from Cultivated crops (3.D.e)	
	5.4.11	Emissions from the Use of pesticides (3.D.f)	
5.5	S N	FR 3.F Field Burning of Agricultural Residues	. 140
	5.5.1	Methodological Issues	
5	5.5.2	Activity data	140
5	5.5.3	Emissions from Field burning of agricultural residues (3.F)	140
5.6	5 N	FR 3.I Agriculture other	. 141
5.7	' PI	lanned improvements	. 141
5.8	B R	ecalculations	. 141
<i>6.</i>	WAS7	TE (NFR SECTOR 5)	. 142
6.1		ector Overview	
0.1	6.1.1		
	6.1.1		
	6.1.1	3 Uncertainty Assessment	142
6	5.1.2		
	J.1.Z	Methodological issues	145
6.2		Methodological issues FR 5.A Waste Disposal on Land	
6.2 6.3	2 N	3	147
6.3	2 N B N	FR 5.A Waste Disposal on LandFR 5.B Composting	147 147
6.3 6.4	2 N B N L N	FR 5.A Waste Disposal on Land FR 5.B Composting FR 5.C Incineration and open burning of waste	147 147 147
6.3 6.4 6.5	N N N N	FR 5.A Waste Disposal on Land FR 5.B Composting FR 5.C Incineration and open burning of waste FR 5.D Wastewater handling	147 147 147 148
6.3 6.4 6.5 6.6	2 N B N I N 6 N	FR 5.A Waste Disposal on Land FR 5.B Composting FR 5.C Incineration and open burning of waste FR 5.D Wastewater handling FR 5.E Other waste	147 147 147 148 149
6.3 6.4 6.5 6.6	2 N B N H N 5 N 6 N	FR 5.A Waste Disposal on Land FR 5.B Composting FR 5.C Incineration and open burning of waste FR 5.D Wastewater handling FR 5.E Other waste	147 147 147 148 149
6.3 6.4 6.5 6.6 6.7	2 N B N I N 5 N 6 N 7 Pl	FR 5.A Waste Disposal on Land FR 5.B Composting FR 5.C Incineration and open burning of waste FR 5.D Wastewater handling FR 5.E Other waste	147 147 148 149 149

7.1	Explanations and justifications for recalculations	151
	Recalculations, including in response to the review process, and ned improvements	151
REFER	PENCES	. 163
ANNEX	KES	. 165
Annex	I: Key categories	. 166
Annex	II: Uncertainty analysis	. 182

LIST OF TABLES

Table 1-1	Data sources and data sets per IPCC sector, source category	26	
Table 1-2	Summary of KCA for NOx28		
Table 1-3	Summary of KCA for NMVOC	29	
Table 1-4	Summary of KCA for SOx	29	
Table 1-5	Summary of KCA for NH3	30	
Table 1-6	Summary of KCA for PM2.5	30	
Table 1-7	Quality assurance / quality control procedures for the Greek emissions inv		
Table 1-8	Result of overall uncertainty estimation for the main pollutants SOx, NOx, NMVOC, NH3 and PM2.5		
Table 3-1	Completeness of "1.A Stationary Fuel Combustion Activities"	48	
Table 3-2	Key sources of sector Energy (stationary)	49	
Table 3-3	Methodology that is applied per pollutant and category of sector Energy (stationary)	51	
Table 3-4	Fuel consumption (TJ) from NFR 1.A.1.a Public Electricity and Heat Produ 1990–2022		
Table 3-5	Fuel consumption (TJ) from NFR 1.A.1.b Petroleum Refining 1990-2022	55	
Table 3-6	Fuel consumption (TJ) from NFR 1.A.1.c Manufacture of Solid fuels and O Energy Industries 1990–2022		
Table 3-7	SO2 emission factors of liquid fuels (2022)	58	
Table 3-8	Fuel consumption (TJ) from NFR 1.A.4.a.i Commercial/Institutional: Static 1990–2022		
Table 3-9	Fuel consumption (TJ) from NFR 1.A.4.b.i Residential: stationary 1990–20)2261	
Table 3-10	Fuel consumption (TJ) from NFR 1.A.4.c.1 Agriculture/Forestry/Fishing: Stationary 1990–2022	62	
Table 3-11	Fuel consumption (TJ) from NFR 1.A.4.c.2 Agriculture/ For-estry/Fishing: road Vehicles and Other Machinery		
Table 3-12	Transport activities taken into account for emission calculations		
Table 3-13	Key sources of sector Energy (transport activities)	66	
Table 3-14	Methodology that is applied per pollutant and category of sector Energy (mobile)	67	
Table 3-15	Fuel consumption (TJ) from NFR 1.A.3 Transport 1990–2022	68	
Table 3-16	Fuel consumption (TJ) from NFR 1.A.3.a Aviation 1990–2022	70	
Table 3-17	Fuel consumption (TJ) from NFR 1.A.3.b Road Transport 1990–2022	74	
Table 3-18	Fuel consumption (TJ) from NFR 1.A.3.c Railways 1990–2022	75	
Table 3-19	Fuel consumption (TJ) from NFR 1.A.3.d Navigation 1990–2022	77	
Table 3-20	Overview of sub categories of Category 1.B Fugitive Emissions and status estimation		
Table 3-21	Key sources of sector 1.B Fugitive Emissions	83	
Table 3-22	Lignite production in Mt	83	
Table 3-23	Activity data of NFR 1.B.2 category		
Table 4-1	Completeness of sub categories in sector 2 Industrial Processes and Produces		
Table 4-2	Key sources of sector 2 Industrial Processes and Product Use	91	

Table 4-3	Methodology that is applied per pollutant and category of sub categories is sector 2 Industrial Processes and Product Use.	
Table 4-4	Percentage of paint use on coating applications	102
Table 4-5	Activity data	103
Table 4-6	Maximum VOC content limit values for paints and varnishes in accordance DIRECTIVE 2004/42/CE of the European parliament and of the council of April 2004	21
Table 4-7	Percentage and Emission Factors of organic solvent use on degreasing	
Table 4-8	Percentage and Emission Factors of organic solvent use on dry cleaning	
Table 4-9 (a)	Activity data (kg)	
Table 4-9 (b)	Activity data (kg) and per of shoes	
Table 4-10	Activity data	
Table 4-11 (a)	Activity data	117
Table 4-11 (b)	Activity data	118
Table 4-12	Average wood board density values used	119
Table 5-1	Overview of sub-categories of agriculture and status of estimation in Gree agriculture inventory	
Table 5-2	Key sources of NFR sector 3 Agriculture	123
Table 5-3	Summary of methodologies used in Greece's agriculture inventory	124
Table 5-5	Pameters for NH3 emissions estimation	129
Table 5-6	Pameters for NH3 emissions estimation	130
Table 5-7	The population of Other livestock (Poultry) ((in 1000s) in Greece	133
Table 6-1	Completeness of sub categories in NFR Sector 5 Waste	144
Table 6-2	Key sources of NFR sector 5 Waste.	145
Table 6-3	Methodology that is applied per pollutant and category of sub categories is sector 5 Waste.	
Table 6-4	Activity data of category 5E (number of fire events)	149
Table 7-1	Recommendations from the NECD Review 2023	153
Table I-0-1	KCA level assessment for NOx (with key categories in bold)	166
Table I-0-2	KCA trend assessment for NOx (with key categories in bold)	167
Table I-0-3	KCA level assessment for NMVOC (with key categories in bold)	169
Table I-0-4	KCA trend assessment for NMVOC (with key categories in bold)	171
Table I-0-5	KCA level assessment for SOx (with key categories in bold)	173
Table I-0-6	KCA trend assessment for SOx (with key categories in bold)	174
Table I-0-7	KCA level assessment for NH3 (with key categories in bold)	175
Table I-0-8	KCA trend assessment for NH3 (with key categories in bold)	176
Table I-0-9	KCA level assessment for PM2.5 (with key categories in bold)	177
Table I-0-10	KCA trend assessment for PM2.5 (with key categories in bold)	179
Table II-0-1	Uncertainty analysis of NOx emissions	182
Table II-0-2	Uncertainty analysis of NMVOC emissions	187
Table II-0-3	Uncertainty analysis of SOx emissions	192
Table II-0-4	Uncertainty analysis of NH3 emissions	197
Table II-0-5	Uncertainty analysis of PM2.5 emissions	202

LIST OF FIGURES

Figure 1-1	Organizational Structure of the National Inventory System
Figure 1-2	Air pollutant emissions inventory preparation process in Greece2
Figure 1-3	QA/QC processes and procedures and inventory related activities
Figure 2-1	NOx emissions by sector (in kt) for the years 1990 – 20224
Figure 2-2	NMVOC emissions by sector (in kt) for the years 1990 – 20224
Figure 2-3	SOx emissions by sector (in kt) for the years 1990 – 20224
Figure 2-4	NH3 emissions by sector (in kt) for the years 1990 – 20224
Figure 2-5	PM2.5 emissions by sector (in kt) for the years 1990 – 20224
Figure 2-6	Pb emissions by sector (in kt) for the years 1990 – 20224
Figure 4-1	Contribution of organic solvents on NMVOC emissions due degreasing10
Figure 4-2	Contribution of other activities with solvent use on NMVOC emissions11
Figure 4-3	Contribution of food and beverage production on NMVOC emissions11
Figure 5-1	Calculated emissions for NH3 from 1990 till 2022 for Cattle in Greece12
Figure 5-2	Calculated emissions for NH3 from 1990 till 2022 for Sheep in Greece12
Figure 5-3	Calculated emissions for NH3 from 1990 till 2022 for Swine in Greece13
Figure 5-4	Calculated emissions for NH3 from 1990 till 2022 for Poultry in Greece13
Figure 5-5	Calculated emissions for NH3 and NOx from 1990 till 2022 from Inorganic fertilizers in Greece
Figure 5-6	Calculated emissions for NH3 and NOx from 1990 till 2022 from Urine and dung deposited by grazing livestock in Greece

1. Introduction

1.1 National inventory background

The Ministry of Environment and Energy (MEEN) is the main governmental body entrusted with the development and implementation of environmental policy in Greece. MEEN is responsible, among others, for the formulation of policies concerning environmental protection, energy, climate change and forestry, for the coordination of implementation efforts and to ensure compliance with the current legislative framework. For this purpose, MEEN cooperates both with other competent ministries and with regional, prefectural and local authorities. Other ministries are responsible for integrating environmental policy and climate change targets within their respective fields

The Ministry of Environment and Energy (MEEN) administrates Greece's reporting obligations to the:

- Convention on Long-range Transboundary Air Pollution (LRTAP) of the United Nations Eco-nomic Commission for Europe (UNECE),
- ➤ United Nations Framework Convention on Climate Change (UNFCCC),
- > European Commission (EC), and the
- > European Environment Agency (EEA).

MEEN is designated as single national entity with overall responsibility for inventory preparation.

1.2 Institutional, legal and procedural arrangements

MEEN is responsible for the provision of information concerning the state of the environment in Greece in compliance with relevant requirements defined in international conventions, protocols and agreements.

The preparation of the Greek CLRTAP/UNECE and NEC emissions inventories is based on the existed National Greenhouse Gas Inventory System, after a streamlining effort of incorporating the processes of preparing emissions inventories into one. An overview of the organizational structure of the National Emmission Inventory System is presented in Figure 1-1.

The entities participating for the preparation of the CLRTAP/UNECE and NEC submission are:

- > The **MEEN** designated as the national entity responsible for the national inventory, which keeps the overall responsibility, but also plays an active role in the inventory planning, preparation and management.
- ➤ The National Technical University of Athens (NTUA) / School of Chemical Engineering, which has the technical and scientific responsibility for the compilation of the annual inventory for all NFR sectors for the 2017 2024 submissions of CLRTAP/UNECE and NEC inventories.
- ➤ Governmental ministries and agencies through their appointed focal persons, ensure the data provision.

International or national associations, along with individual public or private industrial companies contribute to data providing and development of methodological issues as appropriate.

The legal framework defining the roles-responsibilities and the co-operation between the MEEN, NTUA and the designated contact points of the competent Ministries was formalized and updated by Joint Ministerial Decision 22993/2017 entitled "Structure and operation of the National Greenhouse Gases Inventory System". The above mentioned decision includes a description of each entity's responsibilities, concerning the inventory preparation, data providing or other relative information. This formal framework ensures the efficient collaboration between the entities involved, assuring the timely collection and quality of the activity data required and solving data access restriction problems raised due to confidentiality issues.

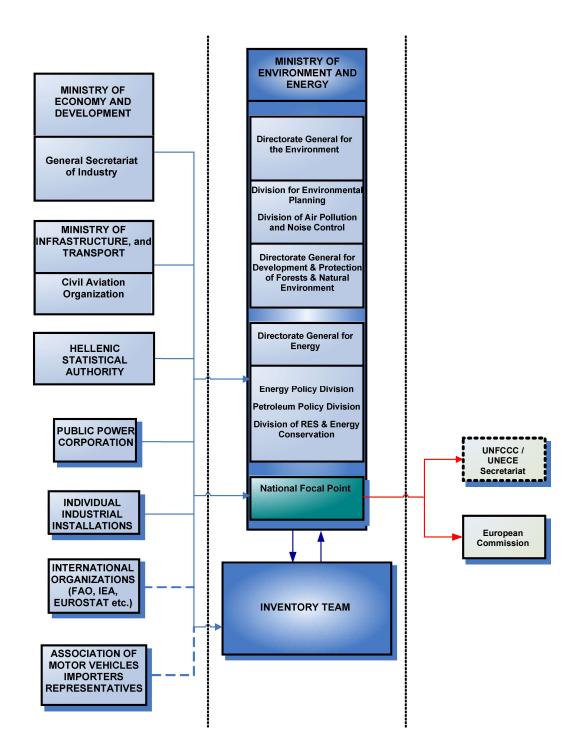


Figure 1-1 Organizational Structure of the National Inventory System

1.2.1 Roles and Responsibilities

1.2.1.1 Ministry of Environment and Energy

The Ministry of Environment and Energy, MEEN, has the overall responsibility, as the national entity, for the national GHG, CLRTAP/UNECE and NEC inventory. Among its responsibilities are the following:

- The co-ordination of all ministries and governmental agencies involved, as well as any
 relevant public or private organization. In this context, it oversees the operation of the
 National System and decides on the necessary arrangements to ensure compliance with
 relevant decisions.
- The official consideration and approval of the inventory prior to its submission.
- The response to any issues raised by the inventory review process, in co-operation with the technical consultant (NTUA), who have the technical and scientific responsibility for the inventory planning, preparation and management of the inventory, as mentioned above.
- The timely submission of the GHG, CLRTAP and NEC inventory to the European Commission and the UNFCCC / UNECE Secretariats.
- The keeping of the Centralised Inventory File, which is delivered to the inventory team
 which has the technical responsibility for the inventory planning, preparation and
 management (currently NTUA) at the beginning of each inventory cycle. The Centralised
 Inventory File is kept at the premises of the MEEN.
- The supervision of Quality Assurance/Quality Control Plan (QA/QC)

As it appears from the above description, the role of the MEEN is not narrowed to the coordination of the entities involved in the inventory process and to facilitate the activity data transfer from the data providers to the Inventory Team (NTUA). MEEN has an active role in monitoring and overseeing the inventory process through continuous communication and frequent scheduled and / or ad-hoc meetings with the Inventory Team (NTUA) and the competent ministries or other agencies involved.

1.2.1.2 National Technical University of Athens (NTUA) School of Chemical Engineering

The Ministry of Environment and Energy has assigned, on a contract basis, the National Technical University of Athens (NTUA) / School of Chemical Engineering as the national institution that has the technical and scientific responsibility for the planning, preparation and management of the

2017-2024 national inventories for all NFR sectors. In this framework, NTUA has the following responsibilities / tasks to fulfil for the inventory preparation:

- 1. Data collection (activity data and emission factors) for all source categories.
- 2. Reliability check of input data through
 - ✓ the comparison of the same or similar data from alternative data sources and
 - ✓ time-series assessment in order to identify changes that cannot be explained.
- 3. Selection of the appropriate methodologies according to the EMEP/EEA air pollutant emission inventory guidebook 2023, preparation of air pollutant emissions estimates by applying the methodologies and models having been selected.
- 4. Data processing and archiving.
- Assessment of the consistency of the methodologies applied, inventory improvement recalculations.
- 6. Reliability check of results.
- 7. Key categories analysis.
- 8. Uncertainty assessment.
- 9. Preparation of the NFR tables.
- 10. Preparation of Informative Inventory Report (IIR).
- 11. Preparation and keeping of annual Centralised Inventory File.
- 12. Development of QA/QC procedures.
- 13. Implementing the QA/QC procedures under the supervision of MEEN.

The NTUA co-operates with a number of government agencies and other entities for the preparation of the inventory (see next section). It should be mentioned that this co-operation is not restricted to data collection but it also concerns methodological issues as appropriate.

The names and contact details of the NTUA inventory team follows:

1. Ioannis Sempos (Sebos)

Scientific responsible - coordinator

Chemical Engineer, MBA, PhD

Address: National Technical University of Athens, School of Chemical Engineering,

Heroon Polytechniou 9, Zografos, 157 80 Athens, Greece.

E-mail: <u>isebos@mail.ntua.gr</u>

Tel: +30 210 772 3135 FAX: +30 210 772 3155

2. Athina Progiou

Dr Mechanical Engineer E-mail: ap@axonenviro.gr Tel: +30 210 8223083 Fax: +30 210 8238604

3. Leonidas Kallinikos

Chemical Engineer, PhD

E-mail: leokalls@central.ntua.gr

Tel: +30 210 772 3240 FAX: +30 210 772 3155

4. Ioanna Katsavou

Chemical Engineer, PhD

E-mail: katsavou@central.ntua.gr

Tel: +30 210 772 3149 FAX: +30 210 772 3155

5. Panagiota-Maria Eleni

Chemical Engineer, PhD

E-mail: peleni@central.ntua.gr

Tel: +30 210 772 3149 FAX: +30 210 772 3155

6. Despoina Vlachaki

Forester, MSc

E-mail: dvlachaki@homeotech.gr

Tel: +30 2310 989 585 FAX: +30 2310 989 581

7. Spyridoula Ntemiri

Chemical Engineer, PhD

E-mail: spntemiri@gmail.com

Tel: +30 210 772 3149 FAX: +30 210 772 3155

It should be mentioned that, whenever necessary, the above mentioned NTUA's Inventory Team is ad hoc supported by experts either from the NTUA or other institutions.

1.2.1.3 Government Ministries/ Government agencies

The following government agencies and ministries, develop and maintain, within their terms of operation, data sets and emission methodology information necessary for the estimation of air pollutant emissions / removals.

The co-operation with the following government agencies and other entities for the preparation of the inventory is indispensable, as those agencies and entities develop and maintain statistical data necessary for the estimation of GHG and air pollutant emissions / removals:

- > The Ministry of Environment and Energy provides
 - annual data for energy consumption and production (more specifically: Energy policy division Solid fuels and electricity; Petroleum policy division Liquid and gaseous fuels; Division of RES and energy conservation Renewable energy sources).
 - data for solid waste management (Department of Solid Waste Management) data for wastewater treatment (Cental Water Agency)
 - activity data and emissions for the installations included in the Emissions Trading system (Directorate of Climate Change and Air Quality)
 - o data for f-gases use (Directorate of Climate Change and Air Quality)
 - data for emissions / removals from LULUCF activities (General Directorate for the Development and Protection of Forests and Agricultural Environment).
- The Hellenic Statistical Authority represents the main source of information for the estimation of emissions / removals from most of the IPCC source / sink categories.
- ➤ The Ministry of Economy and Development provides industry data
- ➤ The Ministry of Rural Development and Food provides information and data (through the Hellenic Statistical Authority which processes primary data collected by the Ministry) for the main indices and parameters of rural economy (e.g. animal population, cultivated areas, crops production, etc.).
- ➤ The Ministry of Infrastructure and Transport provides information and data for the vehicle fleet and its technical characteristics. The Civil Aviation Organization, supervised by the same Ministry provides information on Landing and Take-off cycles for both domestic and international aviation.

Data are also obtained from International Organizations as the United Nations Food and Agricultural Organization (FAO), the EUROSTAT, the International Iron and Steel Institute, the International Energy Association. These data are supplementary to the data collected from the aforementioned data providers.

Furthermore, other government organisations, associations, and individual public and private industrial companies contribute to data providing and development of methodological issues as appropriate. For example, data is provided from the National Oganization for Medicines, while data from the Association of Motor Vehicles Importers Representatives or the Hellenic Association of

Fertilizer professionals and traders are supplementary to the official data and are used in cases where official data are temporarily not available. Individual industrial companies / installations, either public or private, as Power Public Corporation, cement plants, etc, constitute an additional data source for the inventory preparation. However, these data are used as supplementary to the official data (e.g. for QC).

1.3 Inventory planning and preparation

1.3.1 CLRTAP/UNECE and NEC inventory, data collection, processing and storage

The preparation of the Greek air pollutant emissions inventory is based on the application of the EMEP/EEA air pollutant emission inventory guidebook – 2023.

The compilation of the inventory is completed in three main stages (Figure 1-2):

- **Stage 1:** The first stage consists of data collection and check for all source/sink categories. The main data sources used are the Hellenic Statistical Authority, the national energy balance, the government ministries/agencies involved and large private enterprises, along with the verified reports from installations under the EU ETS.
 - Quality control of activity data include the comparison of the same or similar data from alternative data sources (e.g. Hellenic Statistical Authority and ETS reports) as well as time-series assessment in order to identify changes that cannot be explained. In cases where problems and/or inconsistencies are identified, the agency's representative, responsible for data providing, is called to explain the inconsistency and/or help solving the problem.
- Stage 2: Once the reliability of input data is checked and certified, emissions/removals per source/sink category are estimated. Emissions estimates are then transformed to the format required by the NFR tables. This stage also includes the evaluation of the emission factors used and the assessment of the consistency of the methodologies applied in relation to the provisions of the EMEP/EEA air pollutant emission inventory guidebook 2023.
 - Quality control checks, when at this stage, are related to time-series assessment as well as to the identification and correction of any errors / gaps while estimating emissions / removals and filling in the NFR tables.
- Stage 3: The last stage involves the compilation of the IIR and its internal (i.e. within technical consultants) check. The official approval procedure follows for one month period of interactions between the Inventory Team (NTUA) and MEEN. During this period, the Inventory Team has to revise the report according to the observations and recommendations of MEEN. On the basis of this interaction process, the final version of the report is compiled. MEEN, who supervises the National System, approves the inventory and then the MEEN submits the IIR to the European Commission and to the UNECE Secretariat.

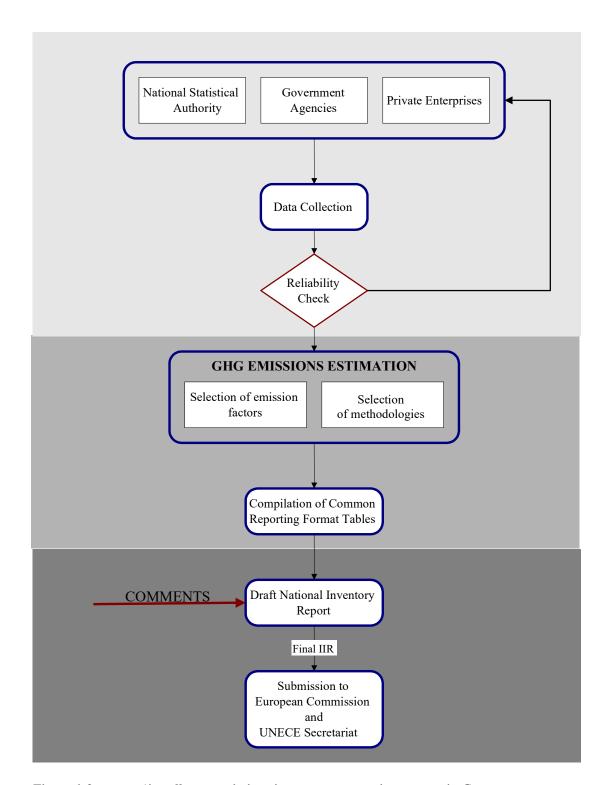


Figure 1-2 Air pollutant emissions inventory preparation process in Greece

The information that is related to the annual air pollutant emissions inventory (activity data, emission factors, analytic results, compilation in the required analysis level of the NFR tables) is stored in MS Excel spreadsheets. Moreover, the final results (IIR and NFR tables) are available in the MEEN web site (https://ypen.gov.gr/).

In addition, and within the context of the Quality Assurance/Quality Control system developed, a master file has been organized aiming at the systematic and safe archiving of inventory information.

1.4 Brief general description of methodologies and data sources used

1.4.1 Emission factors

The estimation of air pollutant emissions per source category is based on the methods described in the EMEP/EEA air pollutant emission inventory guidebook – 2023. The emission factors used derive from the above-mentioned methodological source and special attention was paid in selecting the emission factors that better describe practices in Greece. An overview of the methods applied for the calculation of emissions is presented at the beginning of each NFR sector's section.

The key categories analysis (see Paragraph 1.5) constitutes the basic tool for methodological choice and for the prioritisation of the necessary improvements. In addition, the results of the various review processes (at national, european and international level) represent key input information for the identification of possible improvements. It should be mentioned however, that data availability as well as availability of resources (both human and financial) also have to be considered.

- Data availability could become a significant restrictive parameter when selecting an estimation methodology. The accuracy and the consistency of the emissions estimated depend on the availability of the data needed for the correct application of the selected methodology.
- Availability of resources needs also to be considered as the searching for and the collection of the necessary data in order to apply a detailed methodology for a source category should not affect the completeness and the on-time preparation of an inventory submission.

1.4.2 Activity data

Data collection, processing and check constitute the activity with the longest duration in the annual inventory cycle. The duration of this activity is related to the amount of the necessary data and the number of the entities involved. The on-time and successful completion of this activity has a major effect on the timeliness preparation and submission of the inventory as well as on its accuracy, completeness and consistency.

Table 1-1 gives an overview of the main data sets used for the estimation of emissions. Data from international organizations and databases are supplementary to the data collected from the above data providers.

It should be noted that information and data collected (through questionnaires developed according to the guidelines described in the Commission Decision 2004/156/EC) in the framework of the formulation of the National Allocation Plan (NAP) for the period 2005 – 2007, according to the EU Directive 2003/87/EC (and its transposition to the national Law, JMD 2004) along with the data from the verified reports from installations under the EU ETS for years 2005-2020 constituted a significant source of information and an additional quality control check.

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of emissions of air pollutants that are presented in this report and NFR tables. Other sources of activity data (e.g. the Hellenic Statistical Authority or EUROSTAT) were used, in the cases of categories that the GHG inventory submission to UNFCCC did not include any relevant data.

Table 1-1 Data sources and data sets per IPCC sector, source category

SECTOR		STATISTICAL DATA DATA SOURCES	
1.A1	Electricity generation	Fuel consumption	Public Power Corporation Ministry of Environment and Energy ETS verified reports E-PRTR
1.A2	Manufacturing industry and construction	Fuel consumption	Ministry of Environment and Energy ETS verified reports E-PRTR
1.A3	Transport	Number of vehicles	Ministry of Infrastructure and Transport Hellenic Statistical Authority Association of Greek Auto Importers
		Aircraft landing and take off cycles	Civil Aviation Organization
1.A4	Residential / Tertiary sector / Agriculture	Fuel consumption	Ministry of Environment and Energy
1.B	Fugitive emissions from fuels	Amount of fuels Transmission/distribution pipelines length	Ministry of Environment and EnergyE-PRTR
2	IPPU	Industrial production and Amount of solvents/other products use	 Hellenic Statistical Authority Industrial units ETS verified reports Market surveys National Association of Refrigerating and Cooling Technicians Hellenic Aerosol Association Public Power Corporation National Organization of Medicines Private companies E-PRTR
3	Agriculture	Cultivated areas Agricultural production Livestock population	Hellenic Statistical Authority Ministry of Rural Development and Food
		Fertilizer use	UN Food and Agricultural Organisation Hellenic Fertilizer' Association
5	Waste	Quantities - composition of solid waste generated Recycling Population Industrial production	Ministry of Environment and Energy Association of Communities and Municipalities in the Attica Region (ACMAR) Hellenic Statistical Authority UN Food and Agricultural Organisation

1.5 Brief description of key categories

1.5.1 General description

The identification of key categories is described in the "EMEP/EEA air pollutant emission inventory guidebook 2023". It stipulates that a key category is one that is prioritised with-in the national inventory system because its is significantly important for one or a number of air pollutants in a country's national inventory of air pollutants in terms of the absolute level, the trend, or the uncertainty in emissions.

Furthermore, it is good practice:

- ✓ to identify the national key categories in a systematic and objective manner. This can be
 achieved by a quantitative analysis of the relationship between the magnitude of emission
 in any year (level) and the change in emission year to year (trend) of each category's
 emissions compared to the total national emissions;
- ✓ to focus the available resources for improvement in data and methods on categories indentified as key. The identification of key categories in national inventories enables the limited resources available for preparing inventories to be prioritised; more detailed, higher tier meth-ods can the be slected for key categories. Invetory compilers should use the category specific methods presented in sectoral decision tress Iin the sectoral volumes;
- ✓ that the analysis should be performed at the level of NFR categories or subcategoreis at which the guidebook methods and decision trees are provided in the sectoral volumes. Where possible, some categories should be disaggregated by main fuel types;
- ✓ that each air pollutant emitted from each category should be considered separately;
- ✓ that for each key category, the inventory compiler should determine if certain subcategoreis are particularly significant usually, for this purpose, the subcategories should be ranked according to their contribution to the aggregate key categories. Those subcategoreis that contribute together more than 60% to the key category should be treated as particularly significant. It may be appropriate to focus efforts towards methodological improvements of these most significant subcategories.

All notations, descriptions of identification and results for key categories included in this chapter are based on the latest Inventory Guidebook (EEA 2023).

In this report, the identification of key categories covers all NFR categories and the following reported pollutants:

Main pollutants: SO2, NOx, NMVOC, NH3

> Particulate matter: PM2.5

1.5.2 Used methodology for identification of key categories: Approach 1

The methodology follows the IPCC approach to produce pollutant-specific key categories and covers for both level and trend assessment. In Approach 1, key categories are identified using a predetermined cumulative emissions threshold. Key categories are those which, when summed together in descending order of magnitude, cumulatively add up to 80% of the total level.

The suggested aggregation level of analysis for Approach 1 provided in Table 2-1 of Chapter 2 of the EMEP/EEA emission inventory guidebook 2023 was used. No special considerations like disaggregation to main fuel types have been made. For reasons of transparency, the same level of aggregation for all pollutants was used.

The presented key category analysis was performed by NTUA with data for air emissions of the submission 2024 to the CLRTAP/UNECE and the European Commission. For all examined pollutants a level assessment for year 2022 (last year), as well as a trend assessment for 1990 to 2022 was prepared.

1.5.3 Results of the Level and Trend Assessment (Approach 1)

The results of the key category analysis for the pollutants SO2, NOx, NMVOC, NH3 and PM2.5 are presented in the following tables. More details are given in Annex I.

Table 1-2 Summary of KCA for NOx

NFR Code	Longname	Pollutant	Identification criteria
1A1a	Public electricity and heat production	NOx	L,T
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	NOx	L,T
1A2gviii	Stationary combustion in manufacturing industries and construction: Other	NOx	Т
1A3bi	Road transport: Passenger cars	NOx	L,T
1A3bii	Road transport: Light duty vehicles	NOx	L,T
1A3biii	Road transport: Heavy duty vehicles and buses	NOx	L, T
1A3dii	National navigation (shipping)	NOx	L,T
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	NOx	Т
3Da1	Inorganic N-fertilizers (includes also urea application)	NOx	L
3Da3	Urine and dung deposited by grazing animals	NOx	L

Table 1-3 Summary of KCA for NMVOC

NFR Code	Longname	Pollutant	Identification criteria
1A1b	Petroleum refining	NMVOC	L
1A3bi	Road transport: Passenger cars	NMVOC	L, T
1A3bii	Road transport: Light duty vehicles	NMVOC	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	NMVOC	L
1A3biv	Road transport: Mopeds & motorcycles	NMVOC	L
1A3bv	Road transport: Gasoline evaporation	NMVOC	L, T
1A4bi	Residential: Stationary	NMVOC	L, T
1B1a	Fugitive emission from solid fuels: Coal mining and handling	NMVOC	L
1B2av	Distribution of oil products	NMVOC	L
2H2	Food and beverages industry	NMVOC	L
2D3a	Domestic solvent use including fungicides	NMVOC	L, T
2D3d	Coating applications	NMVOC	L, T
2D3g	Chemical products	NMVOC	L,T
2D3h	Printing	NMVOC	L,T
2D3i	Other solvent use (please specify in the IIR)	NMVOC	T
3B1a	Manure management - Dairy cattle	NMVOC	L
3Da2a	Animal manure applied to soils	NMVOC	L,T

Table 1-4 Summary of KCA for SOx

NFR Code	Longname	Pollutant	Identification criteria
1A1a	Public electricity and heat production	SOx	L, T
1A1b	Petroleum refining	SOx	L, T
1A2gviii	Stationary combustion in manufacturing industries and construction: Other	SOx	Т
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	SOx	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	SOx	Т
1A3dii	National navigation (shipping)	SOx	L, T
1A4bi	Residential: Stationary	SOx	T

Table 1-5 Summary of KCA for NH3

NFR	Longname		Identification
Code		Pollutant	criteria
3B1a	Manure management - Dairy cattle NH3 T		T
3B1b	Manure management - Non-dairy cattle NH3 L, T		L, T
3B2	Manure management - Sheep	NH3	L
3B4gi	Manure mangement - Laying hens NH3 L,T		L,T
3B4gii	Manure mangement - Broilers	NH3	L,T
3B4h	Manure management - Other animals (please specify in IIR)	NH3	Т
3Da1	3Da1 Inorganic N-fertilizers (includes also urea application)		L,T
3Da2a	Animal manure applied to soils	NH3	L,T
3Da3	Urine and dung deposited by grazing animals	NH3	L

Table 1-6 Summary of KCA for PM2.5

NFR Code	Longname	Pollutant	Identification criteria
1A1a	Public electricity and heat production	PM2.5	Т
1A3biii	Road transport: Heavy duty vehicles and buses	PM2.5	L,T
1A3bvi	Road transport: Automobile tyre and brake wear	PM2.5	Т
1A3dii	National navigation (shipping)	PM2.5	L,T
1A4bi	Residential: Stationary	PM2.5	L,T
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	PM2.5	Т
2A5b	Construction and demolition	PM2.5	L
2G	Other product use (please specify in the IIR)	PM2.5	Т
3F	Field burning of agricultural residues	PM2.5	L
5C2	Open burning of waste	PM2.5	L,T

1.6 Information on the QA/QC plan including verification and treatment of confidentiality issues where relevant

1.6.1 QA/QC procedures and verification activities

The development and the implementation of an inventory Quality Assurance / Quality Control (QA/QC) plan represents a key tool for meeting the objectives of National Systems under Article 5 Paragraph 1 of the Protocol as described in Decision 20/CP.7. The same Quality Assurance / Quality Control (QA/QC) plan is applied for the CLRTAP/UNECE and NEC inventories.

Quality management is essential in order to comply with the requirements of (a) producing transparent, consistent, comparable, complete and accurate emissions estimates, (b) establishing a reliable central archiving system concerning all necessary information for emissions inventories development and (c) compiling national reports according to the provisions of the adopted decisions.

In this framework, a QA/QC system is being implemented since April 2004. For the implementation of the QA/QC system the NTUA is responsible in close co-operation with the MEEN. The system is based on the ISO 9001:2000 standard and its quality objectives, as stated in the quality management handbook, are the following:

- 1. Compliance with the 2006 IPCC guidelines and the UNFCCC reporting guidelines while estimating and reporting emissions/removals.
- 2. Compliance with the EMEP/EEA air pollutant emission inventory guidebook 2023 and the UNECE reporting guidelines while estimating and reporting emissions.
- 3. Continuous improvement of GHG and CLRTAP/UNECE / NEC emissions/removals estimates.
- 4. Timely submission of necessary information in compliance with relevant requirements defined in international conventions, protocols and agreements.

The accomplishment of the above-mentioned objectives can only be ensured by the implementation, from all the members of the Inventory Team (see Figure 1-3 for the flow chart of activities concerning emissions inventory), of the QA/QC procedures included in the plan for:

- state data collection and processing,
- applying methods consistent with EMEP/EEA air pollutant emission inventory guidebook – 2023
- waking quantitative estimates of inventory uncertainty,
- sarchiving information and record keeping and
- sompiling national inventory reports.

The QA/QC system developed covers the following processes (see Table 1-7 for the list of procedures within each process):

- ♥ QA/QC system management, comprising all activities that are necessary for the management and control of the inventory agency in order to ensure the accomplishment of the abovementioned quality objectives.
- ♦ Quality control, that is directly related to the estimation of emissions. The process includes activities related to (a) data inquiry, collection and documentation, (b) methodological choice in accordance with the 2006 IPCC Guidelines / EMEP/EEA air pollutant emission inventory guidebook 2023, (c) quality control checks for data from secondary sources and (d) record keeping.
- Archiving inventory information, comprising activities related to centralised archiving of inventory information and the compilation of the national inventory report.
- Quality assurance, comprising activities related to the different levels of review processes including the review of input data from experts, if necessary, and comments from the public
- **Estimation of uncertainties**, defining procedures for estimating and documenting uncertainty estimates per source / sink category and for the whole inventory.
- Inventory improvement, that is related to the preparation and the justification of any recalculations made.

All the procedures described in the QA/QC manual are followed by both the MEEN and NTUA. As described in the chapters of the NIR/UNFCCC entitled "Source-specific QA/QC and verification", source-specific Tier 2 QC procedures are applied in the majority of source categories for quality control and verification purposes.

Furthermore, annual internal audits take place by MEEN/NTUA between January and March of each year and audits by independent local experts are planned and implemented.

Each year the EU prerfoms QA/QC checks (called initial checks) to its member states as a part of EU QA/QC system (UNFCCC inventory). These tests are preformed annually between 15/1 to 28/2. These checks have been designed to verify the transparency, accuracy, consistency, comparability and completeness of the information submitted and include: (a) an assessment whether all emission source categories and gases required under Regulation (EU) No 525/2013 are reported; (b) an assessment whether emissions data time series are consistent; (c) an assessment whether implied emission factors across Member States are comparable taking the IPCC default emission factors for different national circumstances into account; (d) an assessment of the use of 'Not Estimated' notation keys where IPCC tier 1 methodologies exist and where the use of the notation key is not justified in accordance with paragraph 37 of the UNFCCC reporting guidelines on annual greenhouse gas inventories as included in Annex I to Decision 24/CP.19; I an analysis of recalculations performed for the inventory submission, in particular if the recalculations are based on methodological changes; (f) a comparison of the verified emissions reported under the Union's

Emissions Trading System with the greenhouse gas emissions reported pursuant to Article 7 of Regulation (EU) No 525/2013 with a view of identifying areas where the emission data and trends as submitted by the Member State under review deviate considerably from those of other Member States; (g) a comparison of the results of Eurostat's reference approach with the Member States' reference approach; (h) a comparison of the results of Eurostat's sectoral approach with the Member States' sectoral approach; (i) an assessment whether recommendations from earlier Union or UNFCCC reviews, not implemented by the Member State could lead to a technical correction; (j) an assessment whether there are potential overestimations or underestimations relating to a key category in a Member State's inventory.

Moreover, EU carries out comprehensive reviews (similar to centralized UNFCCC reviews) of the national inventory data submitted by Member States. Two comprehensive reviews of the Greek inventory (all sectors except LULUCF) have been performed by EU, i.e. in 2012, 2016 and 2020.

Finally, in 2013, a Bilateral QA exercise between the Spanish and the Greek Inventory teams was performed. The Spanish inventory team reviewed the Agriculture, Waste and IPPU (F-gases) sectors of the Greek inventory. On the other hand, the Greek inventory team reviewed the industrial combustion, industrial processes and waste sectors of the Spanish inventory.

Table 1-7 Quality assurance / quality control procedures for the Greek emissions inventory

Process	Procedure code	Procedures
Quality management	QM 01	System review
	QM 02	System improvement
	QM 03	Training
	QM 04	Record keeping
	QM 05	Internal reviews
	QM 06	Non compliance – Corrective and preventive actions
	QM 07	Supplies
	QM 08	Quality management system
	QM 09	Documents control
	QM 10	Internal communication
Quality control	QC 01	Data collection
	QC 02	Estimation of emissions / removals
	QC 03	Data quality control check
	QC 04	Input data record keeping
Archiving of inventory information	AI 01	Centralised archiving of inventory information
	AI 02	Compilation of reports
Quality assurance	QA 01	Expert review of input data and parameters
	QA 02	Expert review of emissions / removals inventory
	QA 03	Review from public
Estimation of uncertainties	EU 01	Uncertainty analysis
Inventory improvement	II 01	Recalculations management

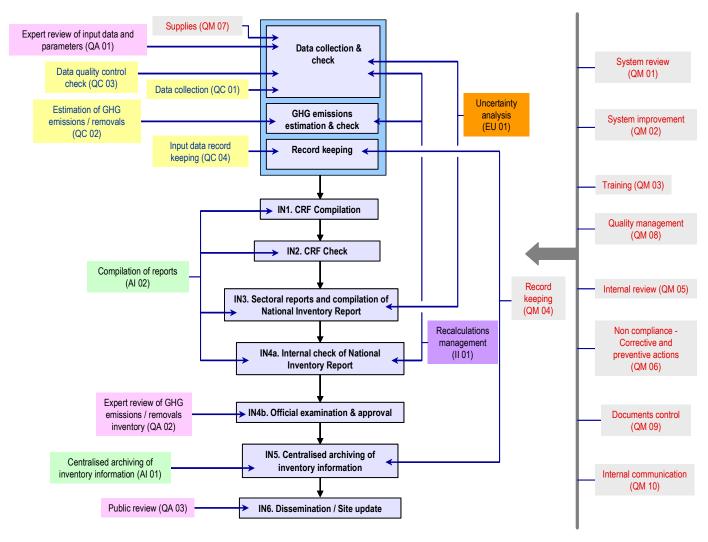


Figure 1-3 QA/QC processes and procedures and inventory related activities

1.6.2 Treatment of confidentiality issues

Confidentiality issues concern mainly the IPPU sector in cases were the activity data relate directly to the production activity of one plant. This is the case in a number of categories of the industrial processes sector.

The provision of data that are concerned as confidential is quite difficult, since these data are not published in the national statistics.

In the past, there were also procedures of confidential data exchange between the inventory team and the Hellenic Statistics Authority (El.Stat). More specifically, the cooperation established under this system contributed to the confidentiality waiver that was decided by the relevant committee of the Service in 2008. The received data have been entered in Greece's QA/QC input file and are constantly used as primary data or in QA/QC checks. Moreover, whenever a confidentiality issue arrises, the inventory system is working in close cooperation with the Prodcom Section of the El. Stat. throughout all the stages of the inventory preparation and during the reviews if necessary. It should be also mentioned that in any case, the El. Stat. provides the inventory team with all the information regarding the plant's id, information that has also been considered as confidential in the past. This enables the resolve of any sub-category completeness issues.

In the recent years, the most efficient way for collecting such information is by communicating directly to the respective plants, building a very good cooperation between the plants and the inventory team and ensuring that the published data are the most updated.

Finally, in a number of cases activity data are reported as confidential in the inventory files. This happens in cases when the inventory team has not received an official approval by the corresponding industry in order to publish direct activity data. It should be noted, however, that in any case the activity data are kept in the Input File of the inventory and are made available at any request during the review processes. For example, this has been the case for ferroalloys productions, when the only plant operating in Greece has not granted permission to publish the reported production data.

1.7 General uncertainty evaluation

In the 2024 submission, a quantitative uncertainty analysis for the main pollutants (SO2, NOx, NMVOC, NH3 and PM2.5) has been carried out. Information on methodology and data sources used is provided in the following sections.

1.7.1 Method used

The method used for the assessment of uncertainty is described in the "EMEP/EEA air pollutant emission inventory guidebook 2023".

In the Greek uncertainty analysis the Tier 1 method was applied for the following pollutants: SO2, NOx, NMVOC, NH3 and PM2.5. By using the error propagation method, the uncertainties for a specific source category can be estimated and by combining these uncertainties an overall uncertainty can be calculated.

The Tier 2 method (Monte Carlo Simulation) was not included in this assessment as the less comprehensive Tier 1 method already gives a clear reference point of the general uncertainty per pollutant.

1.7.2 Data source

In order to estimate the overall uncertainty, the uncertainty of activity data and emission factor, respectively, has to be quantified. The uncertainties of activity data on sectoral level are based on the GHG uncertainty analysis (for more information see NIR submission of Greece to UNFCCC).

Uncertainties of emission factors of the relevant pollutants are based on the qualitative ratings according to the EMEP/EEA air pollutant emission inventory guidebook 2023. Therefore the arithmetic mean value of the proposed upper and lower emission factor uncertainty was calculated and used for the calculation of the overall combined uncertainty.

The quality of estimates for all relevant pollutants has been rated using qualitative indicators as suggested in Chapter 5 of the EMEP/EEA air pollutant emission inventory guidebook 2023.

1.7.3 Results of uncertainty estimation

The quantitative uncertainty assessment was performed with the Tier 1 methods according to (EEA 2023) for the air pollutants SO2, NOx, NMVOC, NH3 and PM2.5 in the year 2022 and the respective level and trend uncertainties.

The results of the uncertainty analysis are indicated in the following table.

Table 1-8 Result of overall uncertainty estimation for the main pollutants SOx, NOx, NMVOC, NH3 and PM2.5.

Pollutant	Emissions 2022, kt	Level Uncertainty 2022, %	Trend Uncertainty 2022, %
NOx	233.05	37.25	11.19
NMVOC	138.02	44.29	9.44
SOx	43.82	8.71	0.91
NH3	64.22	68.84	20.07
PM2.5	36.20	97.99	23.77

A more detailed presentation of the uncertainties on sectoral level per pollutant is given in Annex II.

1.8 General assessment of the completeness

In the present inventory report, which supersedes all previous ones, estimates of air pollutant emissions in Greece for the years 1990-2022 are presented. Emissions estimates included in the NFR tables submitted and discussed in the present report, cover the whole territory of Greece. Emissions were not estimated (NE), only for categories and pollutants that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook – 2023.

2. Trends

2.1 Overview

This chapter describes the trends and the drivers of air pollutant emissions, which Greece is obliged to report based on the Directive (EU) 2016/2284 on the reduction of national emissions of certain atmospheric pollutants.

From the 2017 submission onwards, Greece reports all mandatory pollutants in the NFR14 reporting format from 1990 to the latest inventory year. Emissions of the years before 1990 were last updated and published in previous submissions (e.g. 2014 submission).

The Convention on Long-Range Transboundary Air Pollution (LRTAP) was ratified by Greece in 1983. The Convention has been extended by eight Protocols, of which Greece has ratified the 1994 Sulphur Protocol and the 1988 NOx Protocol:

- ✓ 1988 Sofia Protocol concerning the Control of Emissions of Nitrogen Oxides or their Transboundary Fluxes: This Protocol requires as a first step, to freeze emissions of nitrogen oxides or their transboundary fluxes. The general reference year is 1987. The second step to the NOx Protocol requires the application of an effects-based approach to further reduce emissions of nitrogen compounds. Greece was successful in fulfilling the stabilisation target set out in the Protocol. As reported in previous submissions, the base year (1987) emissions are 340.89kt. It is concluded from this report and associated NFR tables that Greece since the year 2010 has been in compliance with the relevant provisions of the Protocol. Moreover, NOx emissions have a decreasing trend since 2007.
- ✓ The 1994 Oslo Protocol on Further Reduction of Sulphur Emissions: The Protocol sets emission ceilings until 2010 and beyond. In addition, Parties are required to take the most effective measures for the reduction of sulphur emissions, including, inter alia, measures to increase energy efficiency, the use of renewable energy, measures to reduce the sulphur content of fuels, and to apply best available control technologies. The Protocol also encourages the application of economic instruments for the adoption of cost-effective approaches to the reduction of sulphur emissions. Greece was successful in fulfilling the emission ceilings set out in the Protocol.

2.2 Description and interpretation of emission trends by gas

2.2.1 NOx

The trend of NOx emissions from 1990 to 2022 by source category is presented in Figure 2-1. Total NOx emissions decreased from 410.41 kt in 1990 to 233.05 kt in 2022. The emissions in 2022 have been decreased by 43.2% and 50.9% compared to 1990 and 2005, respectively. This decrease is

attributed to the increasing share of natural gas and RES technologies in energy mix; energy efficiency improvements of the conventional power production plants; and the renewal of vehicle fleet. Other reasons are the reduction of consumption of electricity and other fuels, due to the economic recession of the years after 2007. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

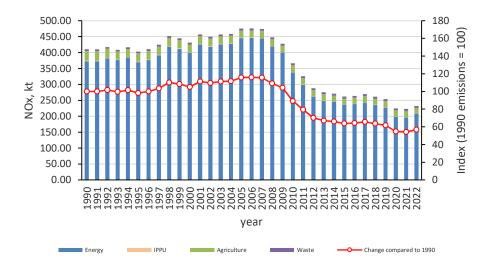


Figure 2-1 NOx emissions by sector (in kt) for the years 1990 – 2022

2.2.2 **NMVOC**

The trend of NMVOC emissions from 1990 to 2022 by source category is presented in Figure 2-2. Total NMVOC emissions decreased from 319.49.01 kt in 1990 to 138.02 kt in 2022. The emissions in 2022 have been decreased by 56.8% and 59.0% compared to 1990 and 2005, respectively. This decrease is attributed to the implementation of the Directives 1999/13/EC, 2004/42/EC and 2010/75/EU on the limitation of emissions of volatile organic compounds due to the use of organic solvents; the Directives 94/63/EC and 2009/126/EC on the control of volatile organic compound emissions resulting from the storage and distribution of petrol; and the reduction of emissions in the road transport sector, due to the renewal of vehicle fleet. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

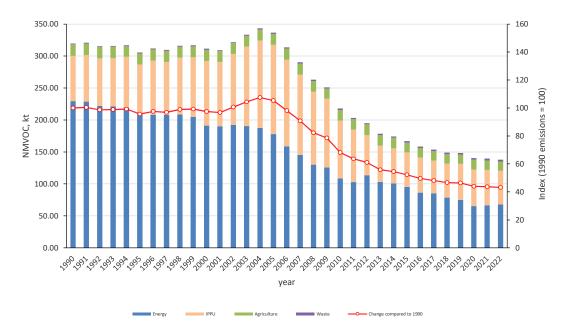


Figure 2-2 NMVOC emissions by sector (in kt) for the years 1990 – 2022

2.2.3 SOx

The trend of SOx emissions from 1990 to 2022 by source category is presented in Figure 2-3. Total SOx emissions decreased from 511.85 kt in 1990 to 43.82 kt in 2022. The emissions in 2022 have been decreased by 91.4% and 92.0% compared to 1990 and 2005, respectively. The operation of desulphurisation plants at large power plants since 1998, the increasing share of RES technologies and NG for electricity production and the gradual phase-down of lignite-fired plants (it will be completed by 2028) resulted in the reduction of SO2 emissions from electricity generation. Reductions with respect to the sulphur content of liquid fossil fuels and the introduction of natural gas in the Greek energy system resulted in a reduction of SO2 emissions from manufacturing industry, transport and residential sectors.



Figure 2-3 SOx emissions by sector (in kt) for the years 1990 – 2022

2.2.4 NH3

The trend of NH3 emissions from 1990 to 2022 by source category is presented in Figure 2-4. Total NH3 emissions decreased from 95.71 kt in 1990 to 64.22 kt in 2022. The emissions in 2022 have been decreased by 32.9% and 19.8% compared to 1990 and 2005, respectively. The decreasing trend of NH3 emissions is mainly attributed to the decrease in animal population and the use of synthetic nitrogen fertilizers, which is due to the increase of organic farming and the impact of initiatives to promote good practice in fertilizer use.

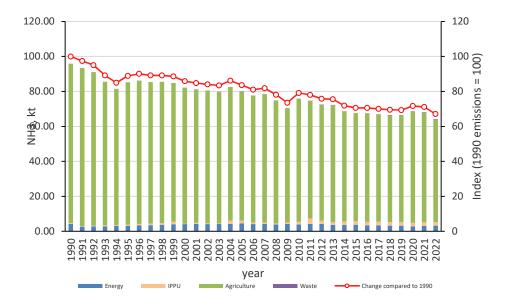


Figure 2-4 NH3 emissions by sector (in kt) for the years 1990 – 2022

2.2.5 PM2.5

The trend of PM2.5 emissions from 1990 to 2022 by source category is presented in Figure 2-5. Total PM2.5 emissions decreased from 60.47 kt in 1990 to 36.20 kt in 2022. The emissions in 2022 have been decreased by 40.1% and 46.1% compared to 1990 and 2005, respectively. This decrease is attributed to the increasing share of natural gas and RES technologies in energy mix; energy efficiency improvements of the conventional power production plants; and the renewal of vehicle fleet. Other reasons are the reduction of consumption of electricity and other fuels, due to the economic recession of the years after 2007. In addition, a significant decrease of emissions were observed in 2020 compared to 2019 due to COVID-19 restrictions in transport sector.

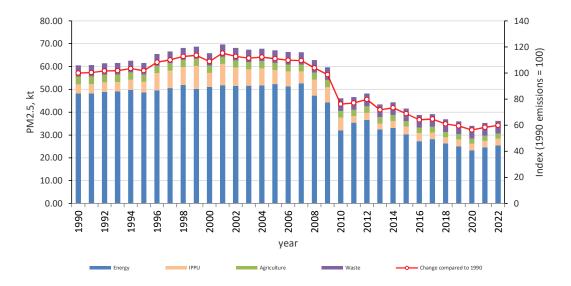


Figure 2-5 PM2.5 emissions by sector (in kt) for the years 1990 – 2022

2.2.6 Pb

The trend of Pb emissions from 1990 to 2022 by source category is presented in Figure 2-6. Total Pb emissions decreased from 504.85 t in 1990 to 11.42 t in 2022. The emissions in 2022 have been decreased by 97.7% and 84.4% compared to 1990 and 2005, respectively. This decrease is mainly attributed to the ban in use of leaded gasoline.

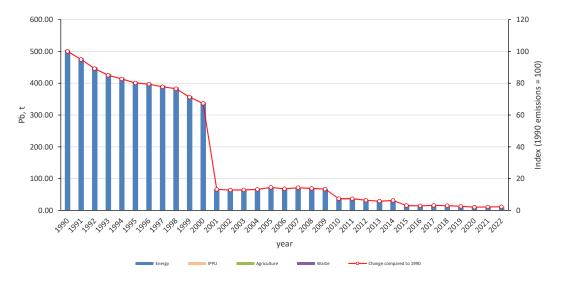


Figure 2-6 Pb emissions by sector (in kt) for the years 1990 – 2022

3. Energy (NFR sector 1)

Sector 1 Energy considers emissions originating from fuel combustion activities (NFR 1.A):

- ➤ 1.A.1 Energy Industries,
- ➤ 1.A.2 Manufacturing Industries and Construction,
- ➤ 1.A.3 Transport,
- > 1.A.4 Other Sectors (commercial and residential),
- ➤ 1.A.5 Other,

as well as fugitive emissions from fuels (NFR 1.B):

- > 1.B.1 Solid fuels,
- ➤ 1.B.2 Oil and natural gas.

3.1 NFR 1.A Stationary Fuel Combustion Activities

3.1.1 General description

This chapter gives an overview of category 1.A Stationary Fuel Combustion Activities. It includes information on completeness and planned improvements as well as on emissions, emission trends and methodologies applied (including emission facors).

Information is also provided in the Greek National Inventory Report 2024 and CRF tables which constitute the submission under the MMR (https://cdr.eionet.europa.eu/gr/eu/mmr/art07_inventory/) and UNFCCC (https://unfccc.int/ghg-inventories-annex-i-parties/2023).

3.1.1.1 Completeness

Table 3-1 provides information on the status of emission estimates of all sub categories. A "V" indicates that emissions from this sub-category have been estimated. Emissions were not estimated (NE), only for categories and gases that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook – 2023.

Emissions of 1A4aii are included under category 1A3b. Emissions of 1A4bii are included under category 1A4cii. Emissions of 1A4ciii are included under category 1A4cii. Finally, emissions of 1A5a are included under category 1A4ai.

3.1.1.2 Key Categories

Key category analysis is presented in Chapter 1.5. This chapter includes information on the Energy (stationary) sector. Key sources within this category are presented in Table 3-2.

3.1.1.3 Uncertainty Assessment

The method used for the assessment of uncertainty is according to the EMEP/EEA air pollutant emission inventory guidebook 2023 (EEA 2023). Further information on the uncertainty assessment of activity data can be found in Greece's National Inventory Report. Where no specific information on uncertainties of emission factors was available, an average of the default values, based on the definitions of the qualitative ratings given in the EMEP/EEA Emission Inventory Guidebook 2019 is used. Please refer to chapter 1.7 for further information about uncertainty.

Table 3-1 Completeness of "1.A Stationary Fuel Combustion Activities".

NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	ОО	Pb	Сд	Hg	As	Cr	Cu	ï	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pvrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	НСВ	PCBs
1A1a	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A1b	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE
1A1c	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE
1A2a	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE
1A2b	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	IE	٧	ΙE	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE
1A2c	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE
1A2d	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A2e	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A2f	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A2gvii	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	٧	NE	NA	٧	٧	٧	٧	٧	NA	٧	٧	NA	NA	NA	NA	NA
1A2gviii	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A4ai	٧	٧	٧	NO	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A4aii	IE	IE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	IE	IE	IE	IE	ΙE	IE	ΙE	ΙE	IE	ΙE	IE	ΙE	ΙE	IE	IE
1A4bi	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A4bii	IE	IE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	IE	IE	IE	IE	ΙE	IE	ΙE	ΙE	IE	ΙE	IE	ΙE	IE	IE	IE
1A4ci	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
1A4cii	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NA	٧	٧	٧	٧	٧	NA	٧	٧	NA	NA	NA	NA	NA
1A4ciii	IE	IE	IE	ΙE	IE	ΙE	IE	IE	ΙE	IE	IE	IE	IE	IE	IE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	IE
1A5a	IE	ΙE	IE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE	IE

Table 3-2 Key sources of sector Energy (stationary).

NFR Code	Longname	Pollutant	Identification criteria
1A1a	Public electricity and heat production	NOx	L,T
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	NOx	L,T
1A2gviii	Stationary combustion in manufacturing industries and construction: Other	NOx	Т
1A3bi	Road transport: Passenger cars	NOx	L,T
1A3bii	Road transport: Light duty vehicles	NOx	L,T
1A3biii	Road transport: Heavy duty vehicles and buses	NOx	L, T
1A3dii	National navigation (shipping)	NOx	L,T
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	NOx	Т
1A1b	Petroleum refining	NMVOC	L
1A3bi	Road transport: Passenger cars	NMVOC	L, T
1A3bii	Road transport: Light duty vehicles	NMVOC	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	NMVOC	L
1A3biv	Road transport: Mopeds & motorcycles	NMVOC	 L
1A3bv	Road transport: Gasoline evaporation	NMVOC	L, T
1A4bi	Residential: Stationary	NMVOC	L, T
1B1a	Fugitive emission from solid fuels: Coal mining and handling	NMVOC	L
1B2av	Distribution of oil products	NMVOC	L
1A1a	Public electricity and heat production	SOx	L, T
1A1b	Petroleum refining	SOx	L, T
1A2gviii	Stationary combustion in manufacturing industries and construction: Other	SOx	Т
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	SOx	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	SOx	Т
1A3dii	National navigation (shipping)	SOx	L, T
1A4bi	Residential: Stationary	SOx	T
1A1a	Public electricity and heat production	PM2.5	T
1A3biii	Road transport: Heavy duty vehicles and buses	PM2.5	L,T
1A3bvi	Road transport: Automobile tyre and brake wear	PM2.5	Т
1A3dii	National navigation (shipping)	PM2.5	 L,T
1A4bi	Residential: Stationary	PM2.5	L,T

	Agriculture/Forestry/Fishing: Off-road			
1A4cii	vehicles and other machinery	PM2.5	T	

L = Level Assessment 2022, T = Trend Assessment 2022/1990

3.1.2 Methodological issues

Methodology and emission factors

Table 3-3 summarizes the methodology that is applied per pollutant and category. Some clarifications about this table:

- ✓ T1 refers to Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023.
- ✓ T2 refers to Tier 2 technology specific activity data and EFs. The source of technology specific Tier 2 EFs is the EMEP/EEA air pollutant emission inventory guidebook 2023.
- ✓ T3/T2 refers to the combined use of Tier 3 facility data obtained from E-PRTR and/or through direct communication with the plants; and the application of Tier 2 technology specific activity data and EFs for the facilities that there are no plant specific data available through E-PRTR or other source.
- ✓ For the estimation of SO2 emissions from liquid fuels, a Tier 2/ CS EFs is applied, which is based on measurements of the sulphur content of oil products.
- ✓ For 1A1a, detailed technology specific AD are available for the whole time-series 1988-2022. Tier 3 facility emission data are also available from E-PRTR. Emissions estimation is based on plant specific emission data, if available through E-PRTR. For the pollutants and plants that Tier 3 data are not available, Tier 2 methodology was applied based on detailed technology specific AD, which were provided by PPC (Public Power Company of Greece).

Activity data

Exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of emissions of air pollutants that are presented in this report and NFR tables. The energy data used for the calculation of emissions derived from the national energy balance and the reports of installations under the EU ETS. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC.

Table 3-3 Methodology that is applied per pollutant and category of sector Energy (stationary).

														- 0,	,											
NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	8	Pb	рэ	Hg	As	Ċ	Cu	ï	Se	Zn	PCDD/PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	HCB	PCBs
1A1a	тз	T3/T2	тз	NE	T2	T3/T2	T2	T2	Т3/Т2	T3/T2	Т3/Т2	Т3/Т2	T3/T2	Т3/Т2	T3/T2	T3/T2	T2	Т3/Т2	Т3/Т2	T2	T2	T2	T2	T2	T2	T2
1A1b		-																								
	T3/T2	T3/T2	T3/T2	NE	T3/T2	T3/T2	T1	T1	T1	T1	T3/T2	T3/T2	T1	T1	T1	T1	T1	T1	NE	NE						
1A1c	T1	T1	T1	NE	T1	T1	T1	T1	T1	T1	NE	NE														
1A2a	T1	T1	T2/CS EFs	NE	T1	T1	T1	T1	T1	T1	NE	NE														
1A2b	T1	T1	T2/CS EFs	NE	T1	IE	T1	IE	T1	T1	T1	T1	T1	T1	T1	T1	NE	NE								
1A2c	T1	T1	T2/CS EFs	NE	T1	T1	T1	T1	T1	T1	NE	NE														
1A2d	T1	T1	T2/CS EFs	T1	T1	T1	T1	T1	T1	T1	T1															
1A2e	T1	T1	T2/CS EFs	T1	T1	T1	T1	T1	T1	T1	T1															
1A2f	T3/T2	T1	T2/CS EFs	T1	T3/T2	T3/T2	T1	T1	T1	T1	T1	T1	T1	T1												
1A2gvii	T1	T1	T2/CS EFs	T1	T1	T1	T1	T1	T1	NE	T1	NE	NA	T1	T1	T1	T1	T1	T1	NA	T1	T1	NA	NA	NA	NA
1A2gviii	T1	T1	T2/CS EFs	T1	T1	T1	T1	T1	T1	T1	T1															
1A4ai	T1	T1	T2/CS EFs	NO	T1	T1	T1	T1	T1	T1	T1	T1														
1A4aii	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
1A4bi	T1/T2	T1/T2	T2/CS EFs	T1/T2	T1/T2	T1/T2	T1/T2	T1/T2	T1/T2	T1/T2	T1/T2															
1A4bii	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
1A4ci	T1	T1	T2/CS EFs	NE	T1	T1	T1	T1	T1	T1	T1	T1														
1A4cii	T1	T1	T2/CS EFs	NE	T1	NA	T1	T1	T1	T1	T1	NA	T1	T1	NA	NA	NA	NA	NA							
1A4ciii	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE
1A5a	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE	IE

3.1.3 NFR 1.A.1 Energy Industries

NFR Category 1.A.1 comprises emissions from fuel combustion for public electricity and heat production (NFR 1.A.1.a), in petroleum refining (NFR 1.A.1.b), and in manufacture of solid fuels and other energy industries (NFR 1.A.1.c).

For 2005–2022 activity data from the emission trading system (ETS) has been considered. ETS data fully covers category 1.A.1.b and 1.A.1.c and covers more than 99% category 1.A.1.a.

3.1.3.1 NFR 1.A.1.a Public Electricity and Heat Production

The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3-3, which is a combination of Tier 2 and Tier 3 method. The allocation of energy consumption by technology was made on the basis of detailed technology specific AD, which were provided by PPC (Public Power Company of Greece) that cover the whole time-series 1988-2022. The plants that do not belong to PPC are natural gas fired plants of combined cycle technology. Therefore, based on this information, the Tier 2 method from 2023 GB can be easily applied (Tier 2 with default technology specific EF from 2023 GB). However, to increase the accuracy of the inventory, the Tier 2 method is combined with Tier 3 method.

Tier 3 facility emission data are available through E-PRTR. Reported emissions are based on plant specific emission data, if available through E-PRTR. For the years, the plants and the pollutants that E-PRTR data are available, it is considered that the emissions associated to these plants are as reported in the E-PRTR. For the plants and the respective pollutants that E-PRTR data were not available, Tier 2 method was applied.

For the years that E-PRTR emission data are not available, country specific EFs were estimated based on E-PRTR data of nearby years. It is considered that the IEF based on previous years' E-PRTR data are more accurate compared to the default Tier 2 technology specific EF from 2023 GB.

For the pollutants and plants that Tier 3 data were not available through E-PRTR for any year, Tier 2 methodology was applied based on the detailed technology specific AD (Tier 2 with default technology specific EF from 2023 GB).

Based on the above described analysis, Emission Factors per fuel (i.e. lignite, HFO, diesel and NG) are calculated. These IEF are applied to the total fuel quantity combusted in Greek power plants in order to ensure the completeness of the emissions of 1A1a.

Summarizing the allocation of energy consumption per technology, we can say that:

\(\brace \) Electricity production from lignite is produced exclusively by steam turbines.

- Natural gas is used mainly in combined cycle units and secondarily in gas turbines.
- Heavy fuel oil is used in gas turbines and in internal combustion engines (only in the islands' electricity systems).
- Diesel is used in gas turbines and in internal combustion engines in the islands' electricity systems.

Table 3-4 shows activity data of category 1.A.1.a.

Table 3-4 Fuel consumption (TJ) from NFR 1.A.1.a Public Electricity and Heat Production 1990–2022

Year	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass
1990	70,521	288,532	IE,NO	IE,NO
1991	76,296	275,344	IE,NO	IE,NO
1992	75,172	295,447	IE,NO	IE,NO
1993	76,860	293,710	IE,NO	IE,NO
1994	75,286	309,364	IE,NO	IE,NO
1995	81,418	295,241	IE,NO	IE,NO
1996	80,348	287,297	IE,NO	IE,NO
1997	77,849	315,696	1,913	IE,NO
1998	75,677	331,753	14,267	IE,NO
1999	78,260	325,642	35,735	19
2000	83,849	346,024	52,324	IE,NO
2001	78,003	353,854	51,586	1,300
2002	76,733	347,508	55,058	1,948
2003	84,273	351,573	61,215	1,149
2004	75,297	364,177	66,404	1,330
2005	82,692	363,954	64,764	1,156
2006	84,528	333,858	77,249	1,130
2007	86,798	348,960	103,081	1,465
2008	91,534	337,798	104,200	1,412
2009	70,046	335,399	75,756	2,288
2010	53,279	317,772	84,186	2,004
2011	50,073	322,769	108,432	3,048
2012	50,455	330,414	92,798	3,197
2013	45,035	292,551	82,455	2,992
2014	46,506	275,553	53,634	2,961
2015	47,564	237,197	55,131	3,181
2016	47,324	182,414	93,499	3,666
2017	52,509	204,777	109,465	3,710
2018	47,191	195,472	112,748	4,110
2019	46,856	141,906	126,240	4,463
2020	40,156	70,340	139,839	5,251

2021	40,963	63,743	156,119	5,079
2022	42,278	63,191	132,056	5,499

3.1.3.2 NFR 1.A.1.b Petroleum Refining

The inventory for the sector of petroleum refining includes emissions from the production of heat, steam and/or electricity in furnaces, gas turbines and internal combustion engines within the refineries as well as emissions from thermal cracking of heavy hydrocarbons. Additionally, emissions from fluid catalytic cracking/CO boiler and flaring are also included.

The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3-3. The emissions of pollutants NOx, SOx, NMVOC and PM10 are based on Tier 3 facility emission data available from E-PRTR. For the years of the time-series that facility data (through E-PRTR) were not available, country specific emission factors (CS EFs) were applied. These CS EFs were determined by using the available E-PRTR data of the other years. The emissions of the other pollutants (except the four above-mentioned pollutants) were estimated by applying a Tier 1 method with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. The activity data of the years 2005-2022 were obtained form the EU ETS reports, while the activity data for the years 1990-2004 from the national energy balance. Table 3-5 shows activity data of category 1.A.1.b.

Table 3-5 Fuel consumption (TJ) from NFR 1.A.1.b Petroleum Refining 1990–2022

Year	Liquid Fuels
1990	34,197
1991	34,215
1992	32,937
1993	33,178
1994	35,418
1995	35,994
1996	39,483
1997	40,307
1998	41,164
1999	37,372
2000	44,769
2001	45,781
2002	47,185
2003	45,394
2004	47,343
2005	53,136
2006	62,950
2007	63,902
2008	60,162
2009	55,493
2010	54,485
2011	50,429
2012	53,330
2013	72,803
2014	77,330
2015	76,712
2016	80,138
2017	71,471
2018	70,868
2019	66,565
2020	65,287
2021	75,261
2022	82,372

3.1.3.3 NFR 1.A.1.c Manufacture of Solid fuels and Other Energy Industries

The inventory for the other energy industries includes GHG emissions from the combustion of natural gas during oil and gas extraction. The annual variation of emissions is related to the changes of the primary production of crude oil and natural gas.

The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3-3. The emissions of pollutants were estimated by applying a Tier 1 method with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. The activity data of the years 2005-2022 were obtained form the EU ETS reports, while the activity data for the years 1990-2004 from the national energy balance. Table 3-6 shows activity data of category 1.A.1.b.

Table 3-6 Fuel consumption (TJ) from NFR 1.A.1.c Manufacture of Solid fuels and Other Energy Industries 1990–2022

Year	Gaseous Fuels
1990	1,737
1991	1,847
1992	1,603
1993	1,524
1994	1,756
1995	1,679
1996	1,769
1997	1,879
1998	1,424
1999	105
2000	1,771
2001	1,683
2002	1,776
2003	1,537
2004	1,855
2005	1,564
2006	1,640
2007	1,589
2008	1,566
2009	1,506
2010	862
2011	812
2012	800
2013	732
2014	584
2015	505
2016	595
2017	619
2018	745
2019	729
2020	592
2021	442
2022	83

3.1.4 NFR 1.A.2 Manufacturing Industry and Combustion

NFR Category 1.A.2 Manufacturing Industries and Construction comprises emissions from fuel combustion in the sub categories:

- ➤ Iron and steel (NFR 1.A.2.a),
- Non-ferrous metals (NFR 1.A.2.b),
- ➤ Chemicals (NFR 1.A.2.c),
- > Pulp, paper and print (NFR 1.A.2.d),
- Food processing, beverages and tobacco (NFR 1.A.2.e),
- ➤ Non-metallic Minerals (NFR 1.A.2.f)
- Mobile Combustion in Manufacturing Industries and Construction (NFR 1.A.2.g.vii)
- ➤ Other Stationary Combustion in Manufacturing Industries and Construction (NFR 1.A.2.g.viii).

Exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of emissions of air pollutants that are presented in this report and NFR tables. The energy data used for the calculation of emissions derived from the national energy balance and the reports of installations under the EU ETS. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC

The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3-3. The emissions of all pollutants were estimated by applying a Tier 1 method with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023, with the following exceptions:

- > SO2 from liquid fuels: for the estimation of SO2 emissions from liquid fuels, a Tier 2/ CS EFs is applied, which is based on measurements of the sulphur content of oil products (Table 3-7).
- ➤ PM2.5 emissions from cement plants were estimated by a Tier 3/2 method. A country specific PM2.5 EF was developed based on PM10 plant specific data, derived from E-PRTR data and applying the Tier 1 share of PM10:PM2.5 ratio from the 2023 EMEP/EEA Guidebook. The emissions were reported under category 2A1.
- Emissions of PMs from cement production are reported under category 2A1. The category1A2f includes PM2.5 and PM10 emissions that are associated with other production except cement. Given that the majority of solid fuels are used in the cement

sector, the PM2.5 emissions reported under 1A2f resulted from the combustion of gaseous and liquid fuels, which have identical Tier 1 emission factors for PM2.5 and PM10.

➤ A Tier 3/2 method was applied to estimate NOx emissions from 1A2f category. A combined use of Tier 3 facility data obtained from E-PRTR; and the development of country specific EFs based on E-PRTR data, which are applied for the years that plant specific data are not available through E-PRTR was followed.

For the estimation of emissions for category 1A2gvii (off-road transport), detail fuel specific information on petroleum fuels were used after consultation with national energy balance compiler. More specific, the fuel consumption and associated emissions of the categories: "transport equipment", "mining and quarrying" and "construction" were reported under category 1A2gvii. The emissions associated to stationary combustion (except non-metallic industries) were reported under 1A2gviii. Emissions associated to non-metallic industries were reported under 1A2f.

 Fue type
 EF (kg SO2 / TJ)

 HFO
 1741.73

 LowS FO
 348.35

 Diesel
 46.16

 LPG
 40

Table 3-7 SO2 emission factors of liquid fuels (2022)

3.1.5 NFR 1.A.3.e.1 Pipeline compressors

Category 1.A.3.e considers emissions from natural gas powered turbines used for natural gas pipelines transport. It is to be noted that all pollutants for years prior to 2001 and post 2011, were allocated to 1A4a or 1A2f as no activity data were provided separately in the energy balance.

Activity data is taken from the energy balance. The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3 3. The emissions of all pollutants were estimated by applying a Tier 1 method with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023.

3.1.6 NFR 1.A.4 Other Sectors

Category 1.A.4 Other sectors enfolds emissions from stationary fuel combustion in the small combustion sector. It also includes emissions from mobile sources from agriculture and forestry.

Emissions from the residential – tertiary sector result from energy consumption for heat in order to cover the needs for the space heating, water heating etc. Thermal needs in these sectors are covered mainly by liquid fossil fuels, while the contribution of biomass (fuel wood), especially in the residential sector, is also significant (mainly in rural areas). The penetration of natural gas to the fuel mixture has an increasing trend.

Emissions from agriculture result from combustion activities that are related to heating needs (e.g. space heating in greenhouses) and to agricultural machinery. Fuel consumption is not allocated to forestry or fisheries since the available information does not allow for such a disaggregation.

Energy needs are covered by diesel and heavy fuel oil in boilers and by lignite and biomass in other stationary equipment. Agricultural machinery uses diesel oil and gasoline. The distribution of diesel consumption between thermal needs and machinery is kept constant during the whole period 1990 - 2022.

Emissions of 1A4aii are included under category 1A3b. Emissions of 1A4bii are included under category 1A4cii. Emissions of 1A4ciii are included under category 1A4cii. Finally, emissions of 1A5a are included under category 1A4ai.

The calculation of the emissions from this sector was performed as described in section 3.1.2 and Table 3-3. The emissions of all pollutants, with the exception of SO2 from liquid fuels, and the air pollutants from biomass combustion in the residential sector were estimated by applying a Tier 1 method with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. For the estimation of SO2 emissions from liquid fuels, a Tier 2/ CS EFs is applied, which is based on measurements of the sulphur content of oil products. For the estimation of all air pollutants associated to the combustion of biomass in the residential sector, a Tier 2 method was applied from the EMEP/EEA air pollutant emission inventory guidebook 2023. The allocation of biomass consumption over the various appliance types was based on data from a biennial survey from the Hellenic Statistical Authority. The biomass consumption in the residential sector was split to the following appliance types: pellet stoves and boilers, open fireplaces, high efficient fireplaces, conventional stoves, high efficient stoves, and conventional boilers.

The activity data of categories 1.A.4.a.i, 1.A.4.b.i, 1.A.4.c.i and 1.A.4.c.ii are presented in Table 3-8, Table 3-9, Table 3-10 and Table 3-11, respectively.

Table 3-8 Fuel consumption (TJ) from NFR 1.A.4.a.i Commercial/Institutional: Stationary 1990–2022

Voor	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass
Year	<u> </u>		+	
1990	6,729	323	IE,NO	IE,NO
1991	9,012	321	IE,NO	IE,NO
1992	8,459	263	IE,NO	IE,NO
1993	8,082	241	IE,NO	IE,NO
1994	8,321	250	IE,NO	IE,NO
1995	9,011	227	IE,NO	IE,NO
1996	11,012	227	IE,NO	IE,NO
1997	10,658	IE,NO	238	IE,NO
1998	10,748	IE,NO	365	IE,NO
1999	10,370	IE,NO	311	IE,NO
2000	10,494	IE,NO	360	IE,NO
2001	13,565	IE,NO	510	IE,NO
2002	13,573	IE,NO	761	IE,NO
2003	14,669	IE,NO	1,158	IE,NO
2004	15,584	IE,NO	1,822	IE,NO
2005	18,767	82	3,074	213
2006	19,228	IE,NO	3,698	241
2007	17,374	IE,NO	4,395	64
2008	16,572	IE,NO	5,393	21
2009	12,460	IE,NO	6,063	46
2010	11,436	IE,NO	5,818	57
2011	9,737	IE,NO	6,899	91
2012	14,556	IE,NO	5,777	565
2013	7,728	IE,NO	5,219	916
2014	3,887	NO,IE	5,254	782
2015	4,686	NO,IE	6,978	1,352
2016	5,061	NO,IE	6,208	984
2017	5,237	NO,IE	6,325	784
2018	5,109	NO,IE	6,049	1,077
2019	5,363	NO,IE	6,690	1,066
2020	3,707	NO,IE	5,935	846
2021	4,153	NO,IE	6,260	1,086
2022	5,062	NO,IE	4,981	804
	,	•	,	1

Table 3-9 Fuel consumption (TJ) from NFR 1.A.4.b.i Residential: stationary 1990–2022

V	Liamial Freela	Calid Finals	Canada Fuela	D:
Year	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass
1990	62,568	942	IE,NO	29,393
1991	62,899	1,303	IE,NO	29,393
1992	61,704	1,279	IE,NO	29,393
1993	61,238	1,265	IE,NO	29,393
1994	61,590	1,241	IE,NO	29,393
1995	64,739	1,158	IE,NO	29,393
1996	87,908	1,255	IE,NO	29,393
1997	91,853	1,386	IE,NO	29,393
1998	96,479	1,073	191	29,426
1999	94,842	666	163	29,393
2000	102,646	742	203	29,393
2001	110,582	698	219	29,393
2002	114,943	253	358	29,393
2003	136,443	153	783	29,393
2004	129,909	252	1,451	29,393
2005	132,412	122	3,022	29,393
2006	125,994	60	5,750	29,393
2007	111,830	73	7,394	31,696
2008	107,777	244	8,688	25,687
2009	92,966	152	10,715	22,611
2010	83,147	141	10,661	23,586
2011	97,051	187	14,571	31,179
2012	85,708	16	12,992	38,053
2013	41,639	37	9,732	32,439
2014	44,314	121	9,696	31,400
2015	57,380	237	14,892	32,831
2016	53,347	183	13,778	28,513
2017	52,501	185	15,100	29,108
2018	43,684	151	13,872	27,551
2019	48,600	161	16,093	26,624
2020	54,121	129	18,505	25,081
2021	46,340	135	20,905	27,088
2022	53,779	201	19,496	28,138

Table 3-10 Fuel consumption (TJ) from NFR 1.A.4.c.1 Agriculture/Forestry/Fishing: Stationary 1990–2022

Year	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass
1990	2,357	109	NO	NO
1991	2,119	137	NO	NO
1992	1,913	175	NO	NO
1993	1,645	218	NO	NO
1994	1,653	163	NO	NO
1995	1,377	218	NO	NO
1996	1,592	227	NO	NO
1997	1,591	165	NO	NO
1998	1,591	168	NO	NO
1999	1,591	260	NO	15
2000	1,591	286	NO	78
2001	1,724	265	NO	13
2002	1,828	NO	NO	13
2003	1,971	NO	NO	253
2004	1,866	NO	NO	345
2005	2,671	102	NO	483
2006	3,077	284	NO	443
2007	2,833	NO	NO	505
2008	2,856	NO	NO	420
2009	2,096	NO	NO	623
2010	1,099	NO	NO	624
2011	1,174	NO	NO	1,156
2012	5,236	NO	NO	1,471
2013	1,851	42	NO	1,076
2014	1,407	116	NO	1,034
2015	1,564	15	NO	1,156
2016	1,573	20	NO	1,142
2017	1,740	35	NO	1,141
2018	1,890	25	NO	1,203
2019	1,938	30	NO	1,254
2020	2,188	60	NO	1,051
2021	2,102	58	NO	1,056
2022	2,219	46	NO	1,185

Table 3-11 Fuel consumption (TJ) from NFR 1.A.4.c.2 Agriculture/ For-estry/Fishing: Off-road Vehicles and Other Machinery

Year	Liquid Fuels
1990	36,944
1991	39,048
1992	36,226
1993	35,396
1994	35,645
1995	33,240
1996	33,696
1997	33,655
1998	33,655
1999	33,655
2000	33,655
2001	34,027
2002	37,387
2003	40,021
2004	34,006
2005	34,078
2006	35,572
2007	31,809
2008	30,942
2009	24,607
2010	21,873
2011	22,578
2012	6,831
2013	4,890
2014	4,972
2015	5,378
2016	4,440
2017	4,642
2018	4,599
2019	4,364
2020	7,538
2021	5,633
2022	5,962

3.1.7 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory of stationary combustion

activities. Improvements that are associated to key categories will be prioritized. All recommendations from 2023 NEC review were implemented in this submission.

3.1.8 Recalculations

There were no recalculations in the 2024 submission.

3.2 NFR 1.A Mobile Fuel Combustion Activities

3.2.1 NFR 1.A.3 Transport

NFR Category 1.A.3 comprises emissions from fuel combustion for transport activities as presented in the following Table 3-14. The methodology applied for calculations is presented in Table 3-14.

Aviation during LTO, road transportation, railways and national navigation are included in the transport sector. Emissions from international marine and aviation during cruise conditions are not included in national totals, but are calculated and reported separately as Memo items.

Total fuel consumed ranged from 190,489 TJ in 1990 to 253,017 TJ in 2022. In Table 3-15 fuel consumption from transport in Greece is presented.

In general, activity data from the energy balance were considered in order to calculate emissions.

Key category analysis is presented in Chapter 1.5. This chapter includes information on the Energy (stationary) sector. Key sources within this category are presented in Table 3-13.

Activity data

Exactly the same data that were used for the estimation of GHG emissions for UNFCCC reporting have been used for the estimation of air pollutants presented in this report and NFR tables. The energy data used for the calculation of emissions derived from the national energy balance and the reports of installations under the EU ETS. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC.

Table 3-12 Transport activities taken into account for emission calculations.

H_Aviation	1A3ai(i)	International aviation LTO (civil)
H_Aviation	1A3aii(i)	Domestic aviation LTO (civil)
F_RoadTransport	1A3bi	Road transport: Passenger cars
F_RoadTransport	1A3bii	Road transport: Light duty vehicles
F_RoadTransport	1A3biii	Road transport: Heavy duty vehicles and buses
F_RoadTransport	1A3biv	Road transport: Mopeds & motorcycles
F_RoadTransport	1A3bv	Road transport: Gasoline evaporation
F_RoadTransport	1A3bvi	Road transport: Automobile tyre and brake wear
F_RoadTransport	1A3bvii	Road transport: Automobile road abrasion
I_Offroad	1A3c	Railways
G_Shipping	1A3di(ii)	International inland waterways
G_Shipping	1A3dii	National navigation (shipping)
I_Offroad	1A5b	Other, Mobile (including military, land based and recreational boats)

Memo Items

O_AviCruise	1A3ai(ii)	International aviation cruise (civil)						
O_AviCruise	1A3aii(ii)	Domestic aviation cruise (civil)						
P_IntShipping	1A3di(i)	International maritime navigation						

Table 3-13 Key sources of sector Energy (transport activities).

NFR Code	Longname	Pollutant	Identification criteria
1A3bi	Road transport: Passenger cars	NOx	L,T
1A3bii	Road transport: Light duty vehicles	NOx	L,T
1A3biii	Road transport: Heavy duty vehicles and buses	NOx	L, T
1A3dii	National navigation (shipping)	NOx	L,T
1A3bi	Road transport: Passenger cars	NMVOC	L, T
1A3bii	Road transport: Light duty vehicles	NMVOC	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	NMVOC	L
1A3biv	Road transport: Mopeds & motorcycles	NMVOC	L
1A3bv	Road transport: Gasoline evaporation	NMVOC	L, T
1A3biii	Road transport: Heavy duty vehicles and buses	SOx	Т
1A3dii	National navigation (shipping)	SOx	L,T
1A3biii	Road transport: Heavy duty vehicles and buses	PM2.5	L,T
13bvi	Road transport: Automobile tyre and brake wear	PM2.5	Т
1A3dii	National navigation (shipping)	PM2.5	L,T

L = Level Assessment 2022

T = Trend Assessment 2022/1990

Table 3-14 Methodology that is applied per pollutant and category of sector Energy (mobile).

NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	00	Pb	p	Hg	As	ن	Cu	ïZ	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a)	benzo(b)	l 6		Total 1-4	HCB	PCBs
1A3a	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
1A3b	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	T3	Т3	Т3	Т3	Т3	T3	T3	Т3	Т3	Т3	Т3
1A3c	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
1A3d	T2	T2	T1	T1	T2	T2	T2	T2	T2	T1	T1	T1	T1	T1	T1	T1	T1									
1A3e	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1
1A5b	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1

Table 3-15 Fuel consumption (TJ) from NFR 1.A.3 Transport 1990–2022

Year	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass	Other Fuels
1990	190489	NO	NO	NO	NO
1991	201882	NO	NO	NO	NO
1992	207011	NO	NO	NO	NO
1993	209304	NO	NO	NO	NO
1994	213357	NO	NO	NO	NO
1995	217714	NO	NO	NO	NO
1996	223707	NO	NO	NO	NO
1997	232683	NO	NO	NO	NO
1998	255999	NO	NO	NO	NO
1999	259707	NO	NO	NO	NO
2000	247371	NO	NO	NO	NO
2001	259161	NO	NO	NO	NO
2002	264013	NO	404	NO	NO
2003	278219	NO	446	NO	NO
2004	283144	NO	444	NO	NO
2005	295421	NO	490	NO	NO
2006	297117	NO	516	1958	NO
2007	305904	NO	600	3588	NO
2008	296958	NO	535	2897	NO
2009	334309	NO	660	3266	NO
2010	292060	NO	658	5355	NO
2011	267715	NO	626	4444	NO
2012	221690	NO	617	5355	NO
2013	221740	NO	562	5203	NO
2014	222329	NO	640	5659	NO
2015	229651	NO	633	6882	NO
2016	234106	NO	649	7225	NO
2017	231081	NO	595	8036	NO
2018	236578	NO	707	7699	NO
2019	239883	NO	627	8235	1094
2020	203015	NO	671	7790	2871
2021	222161	NO	978	8465	3121
2022	239203	NO	1169	9504	3141

3.2.2 NFR 1.A.3.a Aviation

Category 1.A.3.a considers emissions from aviation including international flights (NFR 1.A.3.ai) and domestic flights (NFR 1.A.3.aii). In national totals only emissions during LTO procedure are taken into account, whereas emissions during cruise are calculated but considered as memo items. The calculation of emissions from this sector was performed as described in section 3.2.1 and Table 3-14. Since 2005, emissions from aviation were taken from EUROCONTROL, based on the combination of energy consumption data and air traffic data (Tier 3 Method). For the period 1990-2004, adjustments have been carried out in order to ensure consistency with the EUROCONTROL methodology calculations. To this aim, the splicing technique applied is the surrogate method which was the most convenient for the case, according to the EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023. The data on energy consumption derive from the national energy balance and EUROCONTROL, while data on LTOs are provided by the Civil Aviation Organisation and EUROCONTROL.

It is to be noted that, contrary to other methods based exclusively on fuel consumption, in these Tier 3 calculations, emissions depend very much on the category and type of the aircraft and only on fuel consumption. The involvent of such parameters can leads to a non-linear relations between fuel consuption and emissions.

In Table 3-16 fuel consumption from aviation (LTOs) in Greece is presented.

Table 3-16 Fuel consumption (TJ) from NFR 1.A.3.a Aviation 1990–2022

Year	Liquid Fuels	Liquid Fuels
	Domestic LTO	International LTO
1990	1136	2122
1991	1113	2027
1992	1087	2458
1993	1196	2564
1994	1197	2763
1995	1269	2697
1996	1362	2643
1997	1547	2877
1998	1574	3016
1999	1882	3366
2000	2092	3507
2001	1872	3375
2002	1609	3241
2003	1839	3430
2004	1991	3564
2005	1883	3475
2006	1938	3700
2007	2073	3962
2008	1959	3855
2009	2210	3672
2010	1937	3595
2011	1760	3699
2012	1618	3341
2013	1469	3493
2014	1575	4001
2015	1853	4142
2016	1920	4477
2017	1892	4881
2018	2049	5650
2019	2011	5674
2020	1002	1983
2021	1463	3570
2022	1797	5402

3.2.3 NFR 1.A.3.b Road Transport

Category 1.A.3.b considers emissions from road transport including emissions from all vehicle types, namely passenger cars, light duty vehicles, heavy duty vehicles and buses and mopeds and

motorcycles. In this category non exhaust emissions as emissions from gasoline evaporation and tyre and break wear are also included.

The calculation of emissions from this sector was performed as described in section 3.2.1 and Table 3-14. For the estimation of emissions from road transportation the newer version of COPERT, COPERT 5 (version 5.7.3) (Computer programme to calculate emissions from road transport - Users Manual, D. Gkatzoflias, L. Ntziachristos and Z. Samaras (LAT/AUTH)., 2007, ETC-ACC European Topic Centre on Air and Climate Change), was applied.

COPERT 5 is an MS Windows software program aiming at the calculation of air pollutant emissions from road transport. The technical development of COPERT is financed by the European Environment Agency (EEA), in the framework of the activities of the European Topic Centre on Air and Climate Change. Since 2007, the European Commission's Joint Research Centre has been coordinating and financing the further scientific development of the model. In principle, COPERT has been developed for use from the National Experts to estimate emissions from road transport to be included in official annual national inventories.

In the latest version of COPERT, emission factors for Euro 6 CNG passenger cars, Euro VI diesel buses, Euro VI diesel hybrid buses, and non-exhaust emission factors have been updated. Additionally, some software corrections have been implemented. Specifically, in version 5.7.3, there is now the capability for alternative HDVs classification based on REG EU 2017/2400. CO2 corrections have been removed, and labels of forms and headers have been improved. Finally, corrections have been made to the cold start ratio of diesel Euro 6 cars for NOX & CO, petrol-fueled cars and vans for VOC & CO, Euro 6 CNG passenger cars for SPN23, as well as other minor corrections.

The methodology applied is also part of the EMEP/CORINAIR Emission Inventory Guidebook. The Guidebook, developed by the UNECE Task Force on Emissions Inventories and Projections, is intended to support reporting under the UNECE Convention on Long-Range Transboundary Air Pollution and the EU directive on national emission ceilings. The COPERT 5 methodology is fully consistent with the Road Transport chapter of the Guidebook. The use of a software tool to calculate road transport emissions allows for a transparent and standardized, hence consistent and comparable data collecting and emissions reporting procedure, in accordance with the requirements of international conventions and protocols and EU legislation.

Basic data requirements for the application of the model include: (a) energy consumption by fuel type, (b) fuel characteristics, (c) the number of vehicles per vehicle category, engine size or weight and emission control technology, (d) other parameters such as: the mileage per vehicle class and per road class, the average speed per vehicle type and per road (urban, rural and highway) and (e) climatic conditions. Energy consumption and data on vehicles market (new and used vehicles, withdrawn vehicles, type of vehicles etc.) are provided by the Hellenic Statistical Authority. The energy consumption as well as the associated emissions are calculated based on those data and a number of equations described in Ntziachristos and Samaras (2000). It is to be noted, that contrary to other methods based exclusively on fuel consumption, in these calculations emissions depend very much on the category of the vehicle, e.g. size and technology of the engine. Of course fuel

characteristics have a decisive role on heavy metals and sulfur oxides emissions. However, it has to be noted that, especially during the economic crisis, changes in fuel consumption and kilometres driven has lead to discrepancies in the corresponding timeseries. Trends in kilometres driven is often related to fiscal, economic and social conditions. Greece has been in deep economic recession since 2008-2009, which aggravated after 2012. Emissions depend also on the fleet composition that changes through the years. In Greece, there has been an old car replacement programme from 2011-2016 which has lead to a "cleaner" fleet and, thus, for the same driving parameters and mileage, lower pollutant amounts were emitted. Especially concerning NOX emissions from PCs, it should be noted that the following parameters interact: 1) The number of kilometres driven, 2) The car withdrawal programme, 3) The evolution of the recession deepening after 2011 and improving in 2015 to worsen again in 2016 and onwards. Finally, it has to be taken into account that newer, Euro V and Euro VI PCs have increased NOx enissions. As a combined result of these last parameters, there is an 18% decrease of PCs NO emissions in 2013 compared to 2012 and a slight increase of PCs NOx emissions in 2017 compared to 2015 and 2016 respective emissions. Hence, it can be concluded that emissions do not depend only on fuel consumption, as engines' technology plays an important role, they depend on various parameters resulting in non-linear relations among them.

It's important to note that NMVOC emissions from passenger cars are significant in Greece, largely due to the presence of an aging vehicle fleet. Notably, the old vehicle withdrawal program, which was active in Greece from 2011 until the end of 2016, ceased operation. Following the recalculations conducted in the 2024 submission, spurred by the reconstruction of the vehicle fleet composition using new statistical data and the implementation of Copert v.5.7.3 in 2021, the NMVOC IEF decreased compared to the previous year's submission. Specifically, the NMVOC IEF for 2021 has been revised to 0.119447 t/TJ, a decrease from the previous submission of 0.1259 t/TJ. For 2022, the IEF is reported as 0.1124 t/TJ. It's worth mentioning that the NMVOC IEF ranged from 0.2222 to 0.1194 t/TJ between 2010 and 2021, and for the year 2005, the NMVOC IEF was 0.367978 t/TJ.

The calculation results have been published in peer reviewed scientific journals (Athena Progiou, Ioannis Ziomas (2011): Twenty-Year Road Traffic Emissions Trend in Greece, Water Air Soil Pollut DOI 10.1007/s11270-011-0859-9) and have been approved by measurements (Athena G. Progiou, Ioannis C. Ziomas (2011): Road traffic emissions impact on air quality of the Greater Athens Area based on a 20 year emissions inventory. Science of the Total Environment DOI information: 10.1016/ j.scitotenv.2011.09.050 and Ministry of Environment official reports). As from the above these emissions are not linearly related to FC. Finally, the fuel allocation from total to each vehicle category is not provided and assumptions have been made justifying thus some slight inaccuracies. However the whole fuel consumed is taken into account in the calculations. Biofuel is also taken into account and emissions from biofuel combustion are included in the total emissions for each vehicle category calculated by COPERT.

Priority heavy metals and additional heavy metals emissions for category 1A3bvii: Automobile tyre and brake wear emissions are included for period 2005-2022 in the submission, calculated by the COPERT, which seperates the abovementioned emissions into non - exhaust and total.

It has to be mentioned that, in the latest versions of COPERT (v. 5.6 and 5.7), emissions of Hg are calculated only as a total amount. Due to that, for the whole time series, only exhaust emissions of Hg were included.

In Table 3-17 fuel consumption from road transport in Greece, is presented.

Table 3-17 Fuel consumption (TJ) from NFR 1.A.3.b Road Transport 1990–2022

Year Liquid Fuels Solid Fuels Fuels Biomass fuels* 1990 161185 NO NO NO NO NO 1991 172677 NO NO NO NO NO 1992 176893 NO NO NO NO NO 1993 181013 NO NO NO NO NO 1994 183515 NO NO NO NO NO 1995 189417 NO NO NO NO NO 1996 198512 NO NO NO NO NO 1997 203096 NO NO NO NO NO 1998 213313 NO NO NO NO NO 2000 219719 NO NO NO NO NO 2001 224516 NO NO NO NO NO 2002 232469				Gaseous		Other
1991 172677 NO NO NO NO 1992 176893 NO NO NO NO NO 1993 181013 NO NO NO NO NO 1994 183515 NO NO NO NO NO 1995 189417 NO NO NO NO NO 1996 198512 NO NO NO NO NO 1997 203096 NO NO NO NO NO 1998 213313 NO NO NO NO NO 2000 219719 NO NO NO NO NO 2001 224516 NO NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO		Liquid Fuels	Solid Fuels	Fuels		fuels*
1992 176893 NO NO NO NO 1993 181013 NO NO NO NO 1994 183515 NO NO NO NO 1995 189417 NO NO NO NO 1996 198512 NO NO NO NO 1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO		161185	NO	NO	NO	NO
1993 181013 NO NO NO NO 1994 183515 NO NO NO NO 1995 189417 NO NO NO NO 1996 198512 NO NO NO NO 1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2001 224516 NO A04 NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 4446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO	1991	172677	NO	NO	NO	NO
1994 183515 NO NO NO NO 1995 189417 NO NO NO NO 1996 198512 NO NO NO NO 1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO	1992	176893	NO	NO	NO	NO
1995 189417 NO NO NO NO 1996 198512 NO NO NO NO 1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO	1993	181013	NO	NO	NO	NO
1996 198512 NO NO NO NO 1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2010 261712 NO 658 5355 NO <td>1994</td> <td>183515</td> <td>NO</td> <td>NO</td> <td>NO</td> <td>NO</td>	1994	183515	NO	NO	NO	NO
1997 203096 NO NO NO NO 1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO	1995	189417	NO	NO	NO	NO
1998 213313 NO NO NO NO 1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO	1996	198512	NO	NO	NO	NO
1999 217089 NO NO NO NO 2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO <td>1997</td> <td>203096</td> <td>NO</td> <td>NO</td> <td>NO</td> <td>NO</td>	1997	203096	NO	NO	NO	NO
2000 219719 NO NO NO NO 2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO<	1998	213313	NO	NO	NO	NO
2001 224516 NO NO NO NO 2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659	1999	217089	NO	NO	NO	NO
2002 232469 NO 404 NO NO 2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 <	2000	219719	NO	NO	NO	NO
2003 246526 NO 446 NO NO 2004 248107 NO 444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 595 7955	2001	224516	NO	NO	NO	NO
2004 248107 NO 4444 NO NO 2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 595 7955 NO 2018 199981 NO 707 7622	2002	232469	NO	404	NO	NO
2005 254739 NO 490 NO NO 2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622	2003	246526	NO	446	NO	NO
2006 260555 NO 516 1958 NO 2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286	2004	248107	NO	444	NO	NO
2007 271040 NO 600- 3588 NO 2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922	2005	254739	NO	490	NO	NO
2008 265138 NO 535 2897 NO 2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 <td>2006</td> <td>260555</td> <td>NO</td> <td>516</td> <td>1958</td> <td>NO</td>	2006	260555	NO	516	1958	NO
2009 290341 NO 660 3266 NO 2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2007	271040	NO	600-	3588	NO
2010 261712 NO 658 5355 NO 2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2008	265138	NO	535	2897	NO
2011 240136 NO 626 4444 NO 2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2009	290341	NO	660	3266	NO
2012 194129 NO 617 5355 NO 2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2010	261712	NO	658	5355	NO
2013 198080 NO 562 5203 NO 2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2011	240136	NO	626	4444	NO
2014 196178 NO 640 5659 NO 2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2012	194129	NO	617	5355	NO
2015 199646 NO 633 6680 NO 2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2013	198080	NO	562	5203	NO
2016 202833 NO 646 7139 NO 2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2014	196178	NO	640	5659	NO
2017 199322 NO 595 7955 NO 2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2015	199646	NO	633	6680	NO
2018 199981 NO 707 7622 NO 2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2016	202833	NO	646	7139	NO
2019 205147 NO 627 8286 1094 2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2017	199322	NO	595	7955	NO
2020 178248 NO 671 7922 2871 2021 193229 NO 978 8611 3121	2018	199981	NO	707	7622	NO
2021 193229 NO 978 8611 3121	2019	205147	NO	627	8286	1094
2021 193229 NO 978 8611 3121	2020	178248	NO	671	7922	2871
2022 206050 NO 1169 9485 3141	2021	193229	NO	978	8611	3121
	2022	206050	NO	1169	9485	3141

3.2.4 NFR 1.A.3.c Railways

Air pollutant emissions from railways are calculated according to the default methodology proposed in EMEP EEA Air Pollutant Emission Inventory Guidebook (2023) Tier 1, which is based on the relative consumption of energy per fuel and the typical emission factors. Fuel consumption data used are provided by the national energy balance and are based on real fuel used. The national energy balance is the official energy balance provided by the Hellenic Statistical Authority and is also submitted to EUROSTAT. The fuel consumption fluctuations during the period 2010-2013 are related to the economic crisis and its subsequent post effects. Concerning railways, the sharp decrease in fuel consumption in 2019 is due to fact that the railway's network is under reorganization, reconstruction, and electrification.

The calculation of emissions from this sector was performed as described in section 3.2.1 and Table 3-14.

In Table 3-18 fuel consumption from railways in Greece is presented.

Table 3-18 Fuel consumption (TJ) from NFR 1.A.3.c Railways 1990–2022

Year	Liquid Fuels	Solid Fuels	Gaseous Fuels	Biomass
1990	2717	NO	NO	NO
1991	2113	NO	NO	NO
1992	2027	NO	NO	NO
1993	2070	NO	NO	NO
1994	2242	NO	NO	NO
1995	1854	NO	NO	NO
1996	1940	NO	NO	NO
1997	1811	NO	NO	NO
1998	2027	NO	NO	NO
1999	1765	NO	NO	NO
2000	1765	NO	NO	NO
2001	1765	NO	NO	NO
2002	1765	NO	NO	NO
2003	1765	NO	NO	NO
2004	1765	NO	NO	NO
2005	1750	NO	NO	NO
2006	1793	NO	NO	NO
2007	1622	NO	NO	NO
2008	1579	NO	NO	NO
2009	1322	NO	NO	NO
2010	855	NO	NO	NO
2011	641	NO	NO	NO
2012	1069	NO	NO	NO
2013	770	NO	NO	NO

2014	1838	NO	NO	NO
2015	1710	NO	NO	128
2016	1710	NO	NO	86
2017	1668	NO	NO	82
2018	1585	NO	NO	76
2019	439	NO	NO	NO
2020	307	NO	NO	NO
2021	278	NO	NO	NO
2022	288	NO	NO	NO

3.2.5 NFR 1.A.3.d Navigation

NOx, NMVOC, PM10, PM2.5, TSP, BC and CO emissions from national navigation are calculated according to the default methodology proposed in EMEP EEA Air Pollutant Emission Inventory Guidebook (2023), which is based on the ship category and the type of engines (Tier 2 Method). SOx emissions are calculated based on the sulfur content of thep fuel used. In the framework of National Legislation, in 2020, the sulfur content in fuels decreased significantly (for diesel from 1% to 0.1%, and for high and low sulfur oil from 3.5% and 1.5% to 0.5%, respectively). For that reason, for categories 1A3dii National navigation (shipping) and 1A3di(i) International maritime navigation - Memo Item, SO2 emissions were reduced by 85% and 60%, respectively, between the years 2019 and 2020. Emissions from other pollutants examined are calculated according to Tier 1 Methodology, which is also proposed in EMEP EEA Air Pollutant Emission Inventory Guidebook (2023).

In previous submissions, Tier 1 was used for calculating NOx, PM10, PM2.5, and TSP emissions until 2018. Due to our interest in improving the methodology, as mentioned previously, Tier 2 is now employed for calculating NOx, PM10, PM2.5, and TSP emissions. In the new version of the EMEP EEA Air Pollutant Emission Inventory Guidebook (2023), emission factors for CO, NMVOC, and BC are provided for Tier 2 methodology, while the emission factors for NOx, PM2.5, PM10, and TSP have also been updated for some ship categories. As a result of the updated emission factors in the new version of EMEP (2023), recalculations were carried out for the entire time series. Specifically, emissions from 1990 to 2000 and for NOx, CO, NMVOC, PM10, PM2.5, TSP, and BC were recalculated using Tier 1 methodology, while Tier 2 factors were applied from 2001 onwards. This decision was made due to the absence of earlier data in Eurostat regarding the number of ships per category and year. Furthermore, the following pollutants were calculated for the entire time series using the IEFs provided in the EMEP Guidebook 2023 (Tier 1):

- Benzo(k)fluoranthene
- Benzo(b)fluoranthene
- Benzo(A)pyrene
- Indeno (1,2,3-cd).

The calculation of emissions from this sector was performed as described in section 3.2.1 and Table 3-14.

In Greece, the AD (fuel consumption by fuel type) used for the calculation of emissions from national and international navigation, NFR 1.A.3.dii and 1.A.3.di respectively, are obtained by the national energy balance, which is submitted to the EUROSTAT and other international statistics agencies. Hence, these data are verified and accepted as reliable. Additionally, data on the number of ships by engine type are obtained by EUROSTAT. From the year 2019 and on, a small amount of biodiesel is used in national shipping.

The consumption fluctuations are due to the existing national economic conditions and international circumstances, the complication of which overpasses the scope of the present NIR.

Except from National Navigation (NFR 1.A.3.dii), emissions from International Inland Waterways (NFR 1.A.3.di(ii)), a sub-category of International Navigation (NFR 1.A.3.di), are also included in the national totals. Nevertheless, this category of activity does not exist in Greece. International Maritime Navigation (NFR 1.A.3.di(i)) emissions are calculated as memo items and they are not included in the national totals.

In Table 3-19 fuel consumption from navigation in Greece is presented.

Table 3-19 Fuel consumption (TJ) from NFR 1.A.3.d Navigation 1990–2022

V	Lieudel Fuelle	Linuid Fuels
Year	Liquid Fuels	Liquid Fuels
	Domestic Navigation	International Navigation*
1990	23330	105347
1991	23952	96681
1992	24545	111031
1993	22460	129395
1994	23640	137062
1995	22477	147259
1996	19251	129612
1997	23352	129928
1998	36070	144526
1999	35606	128740
2000	20288	148693
2001	27633	144463
2002	24929	129872
2003	24660	132831
2004	27717	134212
2005	26573	118750
2006	29131	128197
2007	27207	133710

2008	24427	127898
2009	36765	108610
2010	29961	113376
2011	21479	115239
2012	21533	94163
2013	17929	88761
2014	18736	78040
2015	22299	74470
2016	23166	71489
2017	24445	88954
2018	27314	91117
2019	26656	105185
2020	21491	68394
2021	23640	75904
2022	25686	81731

^{*}International maritime navigation is not taken into account in the national totals.

3.2.6 NFR 1.A.5.b Other, Mobile (including military, land based and recreational boats)

In this category emissions from military aviation were included. As for military aviation there are no activity data included in the energy balance, for the period 2005-2022 the fuel consumption for civil aviation as given by EUROCONTROL was subtracted from the total aviation fuel consumption and the result was considered to be consumed for military flights. For the period 1990-2004 there are no data available to perform any calculations.

Tier 1 Method was applied and emission factors from EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023 were taken into account. More specifically, as reported in EMEP/EEA Guidebook, in chapter 3.1.4 Military aircraft (p. 18) "Some types of military transport aircraft and helicopters have fuel and emissions characteristics similar to civil types. Therefore, default emission factors for civil aircraft should be used for military aviation unless better data are available." For this reason, the EFs for the average airplane, which are included in the 2023 EMEP/EEA Guidebook, in Table 3.11 for Tier 1 were applied.

It has to be mentioned that emissions from recreational boats and land-based military are estimated and reported in 1A3dii, since in energy balance, there are no specific activity data for military, land based and recreational boats, which are all included in the two categories: domestic $\kappa\alpha$ international navigation. Moreover, the activity data in category "other" does not include any split and, thus, it is not possible to include in 1A5b the above categories.

The calculation of emissions from this sector was performed as described in section 3.2.1 and Table 3-14.

3.2.7 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory of stationary combustion activities. Improvements that are associated to key categories will be prioritized.

3.2.8 Recalculations

The latest COPERT version 5.7.3 was applied for 2022 calculations. Moreover, reconstruction of the fleet composition was implemented as a result of new statistical data leading to diversified fuel distribution for each vehicle category. These changes were more pronounced for years 2020, 2021. However, to avoid inconsistencies, recalculations were performed even for the previous years, with the new emission factors and based on the updated fleet composition.

In more detail, as a result of the above, recalculations were undertaken for:

- · 1A3bvi 'Road transport: Automobile tyre and brake wear' 2020-2021.
- · 1A3bv "Road transport: Gasoline evaporation" 2020-2021
- 1A3bviii "Road transport: Automobile road abrasion" PM10, 2014-2015, 2017-2018, 2020-2021; additionally clerical errors during the transfer of data in the NFR tables were corrected for TSP 2018 and PM2.5 1993.
- · 1A3bi, 1A3bii, 1A3biv 2013-2021
- · 1A-3biii 2018-2021

Moreover:

- · 1A3dii 'National navigation (shipping),' the fuel consumption data for the year 2019 has been corrected, as highlighted in the EMRT observations from the preceding submission.
- National navigation & internation navigation: Recalculations were performed for the pollutants NOx, CO, NMVOC, TSP, PM2.5, PM10, and BC in categories 1A3dii 'National navigation (shipping)' and 1A3di(i) 'International maritime navigation' for the entire time series. This adjustment was prompted by the updated version of the EMEP GUIDEBOOK 2023. In particular, Tier 1 factors were applied for the period from 1990 to 2000, whereas Tier 2 factors were employed from 2001 onwards. This choice stemmed from the lack of preceding data in Eurostat concerning the quantity of ships per category and year.

Furthermore, the following pollutants were calculated for the entire time series, utilizing the IEFs provided in the EMEP Guidebook 2023 (TIER 1):

- Benzo(k)floranthene
- Benzo(b)fluoranthene
- Benzo(A)pyrene
- Indeno (1,2,3-cd)

3.3 NFR 1.B Fugitive Emissions

Fugitive Emissions arise from the production and extraction of lignite (surface extraction), oil and natural gas; their storage, processing and distribution. These emissions are fugitive emissions and are reported in NFR Category 1.B. Emissions from fuel combustion during these processes are reported in NFR Category 1.A.

3.3.1 Completeness

Table 3-20 provides information on the status of emission estimates of all sub categories. A "V" indicates that emissions from this sub category have been estimated. Emissions were not estimated (NE), only for categories and gases that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook – 2023.

Emissions of subcategory 1.B.2.c (flaring in oil refineries) was reported under 1.A.1.b subcategory.

3.3.2 Key Categories

Key category analysis is presented in Chapter 1.5. Key sources within this category are presented in Table 3-21.

3.3.3 Uncertainty Assessment

The method used for the assessment of uncertainty is according to the EMEP/EEA air pollutant emission inventory guidebook 2023 (EEA 2023). Further information on the uncertainty assessment of activity data can be found in Greece's National Inventory Report. Where no specific information on uncertainties of emission factors was available, an average of the default values, based on the definitions of the qualitative ratings given in the EMEP/EEA Emission Inventory Guidebook 2023 is used. Please refer to chapter 1.7 for further information about uncertainty.

Table 3-20 Overview of sub categories of Category 1.B Fugitive Emissions and status of estimation.

NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	8	Pb	р	Hg	As	Cr	n	ïZ	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	НСВ	PCBs
1B1a	NA	T2	NA	NA	T2	T2	T2	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA								
1B1b	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1B1c	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
1B2ai	NA	T1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA
1B2aiv	IE	ΙE	IE	T1	ΙE	ΙE	ΙE	NA	T1	T1	ΙE	ΙE	T1	NA	NA	NA	NA	NA	NA	NA						
1B2av	NA	T2	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA
1B2b	NA	T1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA
1B2c	IE	IE	IE	IE	IE	IE	ΙE	IE	IE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	ΙE	IE	ΙE	IE	IE	ΙE
1B2d	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

Table 3-21 Key sources of sector 1.B Fugitive Emissions.

NFR Code	Longname	Pollutant	Identification criteria
1B1a	Fugitive emission from solid fuels: Coal mining and handling	NMVOC	L
1B2av	Distribution of oil products	NMVOC	L

L = Level Assessment 2022

T = Trend Assessment 2022/1990

3.3.4 NFR 1.B.1.a Coal mining and handling

Coal mining in Greece concerns exclusively the extraction of lignite. All lignite mines in Greece are surface mines and methane is emitted directly into the atmosphere, as the rock strata overlying the coal are removed during the process.

NMVOC, TSP, PM10 and PM2.5 emissions from lignite mining are calculated on the basis of lignite production and the use of Tier 2 EFs from the EMEP/EEA air pollutant emission inventory guidebook 2023. Both mining and handling emissions are reported.

The national energy balance is the basic source for the activity data (production of lignite, see Table) used for the calculation of emissions.

Table 3-22 Lignite production in Mt

Year	Lignite production (Mt)
1990	51.90
1991	52.70
1992	55.05
1993	54.82
1994	56.67
1995	57.66
1996	59.78
1997	58.84
1998	60.88
1999	62.05
2000	63.89
2001	66.34
2002	70.47
2003	68.30
2004	70.04

2005	69.40
2006	64.52
2007	66.46
2008	65.72
2009	64.89
2010	56.52
2011	58.67
2012	62.96
2013	53.92
2014	50.85
2015	46.25
2016	32.64
2017	37.73
2018	36.49
2019	27.38
2020	14.05
2021	12.40
2022	14.25

3.3.5 NFR 1.B.2.a Oil, NFR 1.B.2.b Natural Gas and 1.B.2.c Venting and flaring

Activities related to exploration, primary production (extraction), processing, storage and transmission/ distribution of crude oil, petroleum products and natural gas are included in this sector. The Greek market of oil and petroleum products comprises four refineries, approximately 50 companies active in the marketing of petroleum products and a large number of retailers and gas stations. The refining capacity of the four refineries exceed 20 Mt of crude oil.

The domestic production of crude oil and natural gas (Table 3-23) present a continuous decreasing trend and as a result emissions are decreasing. Emissions were calculated on the basis of domestic production of crude oil and natural gas and crude oil input in refineries; and the use of Tier 1 EFs from the EMEP/EEA air pollutant emission inventory guidebook 2023. NOx, SOx, NMVOC and PM2.5 emissions associated to fugitive emissions of oil refining / storage were reported as "IE", because they were reported under category 1A1b through the use of E-PRTR data. Emissions of subcategory 1.B.2.c (flaring in oil refineries) was reported under 1.A.1.b subcategory.

For the category 1B2av Distribution of oil products, in order to reflect the effect of the implementation of the Directive 2009/126/EC "on Stage II petrol vapour recovery during refuelling of motor vehicles at service stations", a country-specific T2 method was applied. Based on information from the 2016 evaluation report of the directive, which is entitled "Evaluation of

¹ The reported emissions of 1A1b category were based on E-PRTR data. These data include all relevant emission sources, including fugitives.

Directive 1994/63/EC on VOC emissions from petrol storage & distribution and Directive 2009/126/EC on petrol vapour recovery"², and country specific information related to the implementation of the directive, it was concluded that the implementation of Stage II petrol vapour recovery measures resulted to a reduction of emissions by 20% in 2015 and will result to a reduction by 43% in 2020 compared to the default Tier 1 EF from 2023 EEA Guidebook.

Table 3-23 Activity data of NFR 1.B.2 category

	Prima	ry production	Imports					
Year		Natural gas	Crude oil					
	Crude oil (kt)	(10 ⁶ m ³)	input (kt)					
1990	773	123	14539					
1991	789	116	12362					
1992	653	109	13967					
1993	537	81	11777					
1994	500	38	12914					
1995	435	36	15329					
1996	483	38	17529					
1997	436	37	17957					
1998	293	33	18569					
1999	15	2	15944					
2000	256	36	19371					
2001	171	35	18906					
2002	165	37	19116					
2003	120	27	19782					
2004	118	25	20297					
2005	100	16	18699					
2006	94	23	19836					
2007	74	21	20330					
2008	59	14	19286					
2009	80	11	17780					
2010	115	7	20129					
2011	98	6	16514					
2012	94	6	20978					
2013	70	6	19434					
2014	64	5	20826					
2015	62	4	22085					
2016	176	9	23186					
2017	142	8	24030					
2018	206	12	24327					
2019	169	9	23027					
2020	92	6	22241					
2021	59	4	23711					

² ISBN 978-92-79-55105-5 doi:10.2779/08944

2022 30 2 21,997	2022	30	2	21,997
------------------	------	----	---	--------

3.3.6 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory. Improvements that are associated to key categories will be prioritized.

3.3.7 Recalculations

There were no recalculations in the 2024 submission.

4. INDUSTRIAL PROCESSES AND PRODUCT USE (NFR SECTOR 2)

4.1 Sector overview

This chapter includes information on the estimation of emissions of air pollutants, as well as references for activity data and emission factors reported under NFR Category 2 Industrial Processes and Product Use for the period from 1990 to 2022.

Emissions from this sector comprise emissions from the following categories:

- ➤ Mineral Products (2.A)
- ➤ Chemical Industry (2.B)
- ➤ Metal Production (2.C)
- \triangleright Solvent use (2.D.3)
- > Other product use (2.G)
- > Other production (2.H)
- ➤ Wood processing (2.I)
- ➤ Production of POPs (2.J)
- Consumption of POPs and heavy metals (2.K)
- ➤ Other production, consumption, storage, transportation or handling of bulk products (2.L)

Only process related emissions are considered in this sector; emissions due to fuel combustion in manufacturing industries are allocated to NFR Category 1.A.2 Fuel Combustion – Manufacturing Industries and Construction (see Chapter 3.1.4).

4.1.1 Completeness

Table 4-1 provides information on the status of emission estimates of all sub categories. A "V" indicates that emissions from this sub category have been estimated. Emissions were not estimated (NE), only for categories and gases that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook – 2023.

IE in subcategories 2.A.1 - 2.A.3 was used for emissions that are reported under energy sector.

4.1.2 Key Categories

Key category analysis is presented in Chapter 1.5. Key sources within this category are presented in Table 4-2.

4.1.3 Uncertainty Assessment

The method used for the assessment of uncertainty is according to the EMEP/EEA air pollutant emission inventory guidebook 2023 (EEA 2023). Further information on the uncertainty assessment of activity data can be found in Greece's National Inventory Report. Where no specific information on uncertainties of emission factors was available, an average of the default values, based on the definitions of the qualitative ratings given in the EMEP/EEA Emission Inventory Guidebook 2023 is used. Please refer to chapter 1.7 for further information about uncertainty.

Table 4-1 Completeness of sub-categories in sector 2 Industrial Processes and Product Use.

			•			0																				
NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	00	Pb	p	Hg	As	Cr	Cu	Ni	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	HCB	PCBs
2A1	IE	ΙE	IE	ΙE	٧	٧	٧	٧	ΙE	IE	ΙE	IE	IE	IE	ΙE	ΙE	ΙE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	NA
2A2	IE	IE	IE	ΙE	٧	٧	٧	٧	ΙE	IE	IE	IE	IE	ΙE	IE	ΙE	ΙE	IE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	NA
2A3	IE	ΙE	IE	ΙE	٧	٧	٧	٧	ΙE	٧	٧	٧	٧	٧	٧	٧	٧	٧	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE
2A5a	NA	NA	NA	NA	٧	٧	٧	NA	NA	NA	NA	NA	NA	NA	NA											
2A5b	NA	NA	NA	NA	٧	٧	٧	NA	NA	NA	NA	NA	NA	NA	NA											
2A5c	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2A6	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2B1	٧	٧	NA	٧	NA	NA	NA	NA	٧	NA	NA	NA	NA	NA	NA	NA	NA									
2B2	٧	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B6	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10a	NA	NO	٧	٧	٧	٧	٧	NA	NA	NA	NA	NO	NA	NA	NA	NA	NA	NA	NA	NA						
2B10b	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C1	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	٧	٧	NE	NE	NE	NE	٧	NE	٧
2C2	٧	NE	٧	NE	٧	٧	٧	٧	NE	NE	NE	NE	NE	٧	NE	٧	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2C3	٧	NE	٧	NE	٧	٧	٧	٧	NE	٧	٧	٧	٧	٧	NE	NE										
2C4	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5	NE	NE	٧	NE	٧	٧	٧	NE	NE	٧	٧	NE	٧	NE	NE	NE	NE	٧	٧	NE	NE	NE	NE	NE	NE	٧

					1					1	1	I	I		I											
NFR code	NOx (as NO2)	OOVMN	SOx (as SO2)	EHN	PM2.5	PM10	TSP	ЭВ	00	Pb	рЭ	НВ	As	Cr	ŋ	ïZ	Se	Zn	PCDD/PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	HCB	PCBs
2C6	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7a	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7b	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	ОИ	NO	NO	NO	ОИ	NO	NO	NO	NO
2C7c	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	ОИ	NO	NO	NO	ОИ	NO	NO	NO	ОИ
2C7d	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2D3a	NA	٧	NA	NA	NE	NE	NE	NA	NA	NA	NA	٧	NA	NA	NA	NA	NA	NA	NA	NA						
2D3b	NE	٧	NE	NA	٧	٧	٧	٧	NE	NA	NE	NE	NE	NE	NE	NE	NE	NA								
2D3c	NE	٧	NA	NA	٧	٧	٧	٧	٧	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NE	NA
2D3d	NA	٧	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3e	NA	٧	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3f	NA	٧	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3g	NE	٧	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	٧	NE	NE	NE	NE	NE	NE
2D3h	NA	٧	NA	NA	NE	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA										
2D3i	NA	٧	NA	NA	٧	٧	٧	NA	٧	٧	٧	٧	٧	NA	NA											
2G	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	NE	NE
2H1	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2H2	NA	٧	NA	NA	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA										
2H3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
21	NE	NE	NE	NE	NE	NE	٧	NE	NE	NA	NA	NA	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2J	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	NE									
2K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NE	NE								
2L	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

NFR Code Identification criteria Longname Pollutant 2D3a Domestic solvent use including fungicides **NMVOC** L, T L, T 2D3d Coating applications **NMVOC** 2D3g Chemical products **NMVOC** L,T 2D3h Printing **NMVOC** L,T 2D3i Other solvent use (please specify in the IIR) **NMVOC** Τ 2H2 Food and beverages industry **NMVOC** L 2A5b Construction and demolition PM2.5 2G Other product use (please specify in the IIR) PM2.5

Table 4-2 Key sources of sector 2 Industrial Processes and Product Use.

L = Level Assessment 2022

T = Trend Assessment 2022/1990

4.1.4 Methodological issues

Methodology and emission factors

Table 4-3 summarizes the methodology that is applied per pollutant and category. Some clarifications about this table:

- ✓ T1 refers to Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023.
- ✓ T2 refers to Tier 2 technology specific activity data and EFs. The source of technology specific Tier 2 EFs is the EMEP/EEA air pollutant emission inventory guidebook 2023.
- ✓ T3/T2 refers to the combined use of Tier 3 facility data obtained from E-PRTR and/or through direct communication with the plants; and the application of Tier 2 technology specific activity data and EFs for the facilities that there are no plant specific data available through E-PRTR or other source.
- ✓ NOx emissions of subcategory 2.B.2 are based on facility level measurements. (Tier 3)
- ✓ Subcategory 2B10a: NMVOC. PM2.5, PM10 and TSP are associated to the production of ethylene (1990-1998), 1,2-dichloethane (1990-2000), PVC (1990-2006) and polyestyrene (1990-2006). SO2 is associated with the production of sulfuric acid. Facility data of sulfuric acid production are available and having been used from E-PRTR. NH3 and TSP emissions are associated to the production of ammonium nitrate and are estimated by a Tier 2 method. TSP, PM10 and PM2.5 were also estimated by Tier 2 method, which are associated to NPK fertiliser production.
- ✓ Subcategory 2C2: CS EFs were based on EPRTR data.

- ✓ Subcategory 2D3e (T3/T1): NMVOC is associated the use of xylenes (XYL), methylene chloride (MC), tetrachloroethylene (PER) and trichloethylene (TRI). Estimated emissions from XYL is done using Tier 1 method. Estimated emissions from MC, PER, and TRI is done using national studies for the usage of those solvents on degreasing applications.
- ✓ Subcategory 2D3f: NMVOC is associated the use of methylene chloride (MC), tetrachloroethylene (PER) and trichloethylene (TRI). Estimated emissions from MC, PER, and TRI is done using national studies for the usage of those solvents on dry cleaning applications.

Activity data

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of the emissions of air pollutants that are presented in this report and NFR tables. Other sources of activity data (mainly the Hellenic Statistical Authority) were used, in the cases of categories that the GHG inventory submission to UNFCCC did not include any relevant data. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC and in the following chapters

Table 4-3 Methodology that is applied per pollutant and category of sub categories in sector 2 Industrial Processes and Product Use.

NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	СО	Pb	pɔ	Hg	As	Cr	no	Ż	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	нсв	PCBs
2A1	IE	IE	IE	IE	T1	T1	T1	T1	ΙE	IE	IE	IE	ΙE	IE	IE	IE	ΙE	ΙE	IE	IE	ΙE	ΙE	ΙE	ΙE	IE	NA
2A2	IE	IE	IE	IE	T2	T2	T2	T2	ΙE	ΙE	IE	IE	ΙE	IE	ΙE	IE	IE	ΙE	IE	IE	ΙE	IE	ΙE	IE	ΙE	NA
2A3	IE	IE	IE	IE	T1	T1	T1	T1	ΙE	T1	T1	T1	T1	T1	T1	T1	T1	T1	IE	ΙE	ΙE	IE	ΙE	IE	ΙE	IE
2A5a	NA	NA	NA	NA	T1	T1	T1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2A5b	NA	NA	NA	NA	T1	T1	T1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2A5c	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2A6	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2B1	T2	T2	NA	T2	NA	NA	NA	NA	T2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B2	Т3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2B3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B5	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B6	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B7	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2B10a	NA	T2	T3/T2	NA	T2	T2	T2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
2B10b	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C1	T2	T2	T2	NE	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	NE	T2	T2	NE	NE	NE	NE	T2	NE	T2
2C2	T2/CSEFs	NE	T2/CSEFs	NE	T1	T2/CSEFs	T1	T1	NE	NE	NE	NE	NE	T2/CSEFs	NE	T2/CSEFs	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2C3	T1	NE	T1	NE	T1	T1	T1	T1	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	T1	T1	T1	T1	T1	NE	NE
2C4	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C5	NE	NE	T2	NE	T2	T2	T2	NE	NE	T2	T2	NE	T2	NE	NE	NE	NE	T2	T2	NE	NE	NE	NE	NE	NE	T2
2C6	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7a	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

NFR code	NOx (as NO2)	NMVOC	S0x (as S02)	NH3	PM2.5	PM10	TSP	BC	00	Pb	Cd	ВH	As	ბ	ŋ	Ż	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	НСВ	PCBs
2C7b	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7c	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2C7d	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2D3a	NA	T2	NA	NA	NE	NE	NE	NA	NA	NA	NA	T1	NA	NA	NA	NA	NA	NA	NA	NA						
2D3b	NE	T1	NE	NA	T2	T2	T1	T1	NE	NA	NE	NE	NE	NE	NE	NE	NE	NA								
2D3c	NE	T1	NA	NA	T1	T1	T1	T1	T1	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	NE	NE	NE	NE	NE	NE	NA
2D3d	NA	T2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3e	NA	T3/T1	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3f	NA	T3	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2D3g	NE	T2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
2D3h	NA	T2	NA	NA	NE	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA										
2D3i	NA	T2	NA	NA	T2	T2	T2	NA	T2	T2	T2	T2	T2	NA	NA											
2G	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	NE	T2	T2	T2	T2	T2	T2	T2	NE	NE
2H1	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
2H2	NA	T2	NA	NA	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA										
2H3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
21	NE	NE	NE	NE	NE	NE	T1	NE	NE	NA	NA	NA	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2J	NE	NE	NE	NE	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NE	NE									
2K	NA	NA	NA	NA	NA	NA	NA	NA	NA	NE	NA	NA	NA	NA	NA	NA	NE	NE								
2L	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO

4.2 NFR 2.A.1-2.A.5 Mineral Products

In this category, fugitive PM emissions from bulk material handling are reported. These include emissions from quarrying and mining of minerals other than coal, construction and demolition. Most fugitive PM emissions are reported in NFR category 2.A.5, except emissions from cement that are reported in NFR category 2.A.1, from lime production that are reported in NFR category 2.A.2, and from glass production that are reported in NFR category 2.A.3. Emissions from cement and lime production include point source emissions from kilns.

4.2.1 NFR 2.A.1

PM emissions from cement plants were estimated by a Tier 3/2 method. A combined use of Tier 3 facility data obtained from E-PRTR; and the development of country specific EFs based on E-PRTR data, which are applied for the years that plant specific data are not available through E-PRTR was followed. A country specific PM2.5 EF was developed based on PM10 plant specific data, derived from E-PRTR data and applying the Tier 1 share of PM10:PM2.5 ratio from the 2019 EMEP/EEA Guidebook. The other air pollutants were reported as IE, since they are mainly associated to fuel combustion and therefore, they were reported in the Energy sector. Activity data (i.e. clinker production) were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.2.2 NFR 2.A.2

The air pollutants TSP, PM10, PM2.5 and BC associated to lime production were calculated by applying Tier 2 methodology with Tier 2 EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. The other air pollutants were reported as IE, since they are mainly associated to fuel combustion and therefore, they were reported in the Energy sector. Activity data (i.e. lime production) were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.2.3 NFR 2.A.3

The air pollutants TSP, PM10, PM2.5, BC and heavy metals associated to glass production were calculated by applying Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. The other air pollutants were reported as IE, since they are mainly associated to fuel combustion and therefore, they were reported in the Energy sector. Activity data (i.e. glass production) were obtained from CRF Tables from UNFCCC inventory

submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.2.4 NFR 2.A.5a

The air pollutants TSP, PM10 and PM2.5 associated to quarrying and mining of minerals other than coal were calculated by applying Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. mineral production) were obtained from the annual production statistics of the Greek Mining Enterprises Association. Activity data were also reported in NFR tables. The production quantities of the following minerals were considered: limestone aggregates, Bauxite, Lecholithos, Marbles, Bentonite, Nickel iron, Pearlite, Pozolani, Plaster, fists, attapulgite, dipyros magnesia, kaolin, quisque, mixed sulfur, olivine, and Chuditi. No other mineral production occurs in Greece.

4.2.5 NFR 2.A.5b

The air pollutants TSP, PM10 and PM2.5 associated to construction and demolition were calculated by applying Tier 1 methodology with default EFs and other parameters from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. construction of houses, appartments and non-residential construction) were obtained from the Hellenic Statistics Authority. AD related to road construction were obtained from the EU Road Federation. For the years for which no AD is provided by the EU Road Federation, the consumption of bitumen (obtained from national energy balance) is used as a driver. Activity data were also reported in NFR tables.

It is very important to highlight that there is no Tier 2 method in the 2023 EEA GB for this category. In addition, there is no description of a Tier 3 method in the 2023 EEA GB, but only references to AP-42. Concerning the AD about the Tier 3 application, there is a reference that "collection of such data is likely to be possible only for individual large point sources", i.e. the application of Tier 3 method is possible only for some large sources and not for the whole source category. This means that the application of Tier 3 may lead to incomplete inventory, since it cannot cover all sources, but only some large ones. By taking into consideration of the above analysis, we have decided to use Tier 1 for this emission source. The application of a higher Tier to estimate emissions will be reexamined in the next submissions, when guidance about this issue is improved in the EEA GB.

4.3 NFR 2.B Chemical Products

4.3.1 NFR 2.B.1 Ammonia

Up to 1999 there were two ammonia plants in Greece. The first one (Plant A) has been operating since 1990, with an interruption between the years 1994-1997. It should be mentioned that imported Natural Gas was introduced to the Greek energy system by the Public Gas Company (DEPA) in 1996 and that till 1996 the NG consumption in Greece corresponds to small amounts of domestic NG explored by the company Kavala Oil. As a result, the plant has been using natural gas, provided by the Public Gas Company SA (DEPA) since 1998 while in the years 1990-1993 natural gas has been provided to the plant by the Kavala Oil Corporation.

The other plant (Plant B) has been operating since 1990 and up to 1999 with intervals. According to information already provided in NIR 2010, it used lignite as feedstock until 1991, and liquid fuels until its closure in 1999. It should also be mentioned that both plants were closed during year 1994.

The air pollutants NOx, NMVOC, NH3 and CO associated to the production of ammonia were calculated by applying Tier 2 methodology with Tier 2 EFs for steam reforming (conventional as well as advanced processes) from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual ammonia production) were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.3.2 NFR 2.B.2 Nitric Acid Production

Since 2006 there is only one unit producing nitric acid in Greece therefore, data are received directly by the unit. The methodology used for the production of nitric acid is Dual Pressure. Ammonia is catalytically burned in presence of air at 4 bars. The abatement system used by the Greek installations for reduction of NO_x emissions is the absorption tower.

The reported NOx emissions are based on measurements (Tier 3) reported by the respective plants.

4.3.3 NFR 2.B.10 Other Chemical Industry

The following air pollutants were reported under this subcategory:

✓ NMVOC. PM2.5, PM10 and TSP are associated to the production of ethylene (1990-1998), 1,2-dichloethane (1990-2000), PVC (1990-2006) and polyestyrene (1990-2006). Emissions were estimated by a Tier 2 method / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual chemical production) were obtained from CRF

Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority).

- ✓ SO2 is associated with the production of sulfuric acid. Facility data of sulfuric acid production are available and having been used from E-PRTR. Country specific EFs (CS EFs) have been applied for the years that E-PRTR data are not available. These CS EFs were determined by using the available E-PRTR data of the other years. Activity data (i.e. annual sulfuric acid production) were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority).
- ✓ NH3 and TSP emissions are associated to the production of ammonium nitrate and estimated by a Tier 2 method / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual production of fertilizers) were obtained from the Hellenic Statistical Authority.
- ✓ TSP, PM10 and PM2.5 were also estimated by Tier 2 method / EFs associated to NPK fertiliser production from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual production of fertilizers) were obtained from the Hellenic Statistical Authority.

4.4 NFR 2.C Metal Production

In this category, emissions from iron and steel production as well as process emissions from ferroalloys and non-ferrous metal production are considered.

4.4.1 NFR 2.C.1 Iron and Steel Production

Steel production in Greece is based on the use of electric arc furnaces (EAF). There are no integrated iron and steel plants for primary production as no units for primary production of iron exist, but there are several iron and steel foundries.

The air pollutants associated to the production of steel were calculated by applying Tier 2 methodology with Tier 2 EFs for electric furnace steel plant (equipped with dry ESP abatement technology) from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual steel production) were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.4.2 NFR 2.C.2 Ferroalloys production

Ferroalloy production involves a metallurgical reduction process. As there is only one unit operating in Greece data is plant specific and are characterized by fluctuations.

The air pollutants NOx, SOx, PM10, Cr and Ni associated to the production of Ferronickel were calculated by applying Tier 2 methodology with country specific EFs. These CS EFs were based on available E-PRTR data. The air pollutants TSP, PM2.5 and BC were estimated based on the Tier 1 EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual production), which were used for emission calculations were the same as the ones used in the UNFCCC inventory submission. Activity data were reported as "C" (i.e. confidential) in NFR tables, because there is only one plant operating in Greece.

4.4.3 NFR 2.C.3 Aluminium production

There is only one plant associated to primary aluminium production in Greece. As there is only one unit operating in Greece data are characterized by fluctuations.

Aluminium production data are considered confidential. However, publicly available data from the US Geological Survey and the UN Commodity Statistics Database. These data are reported in the CRF Tables from the UNFCCC inventory submission, which were also used for the estimation of emissions from this category.

The air pollutants associated to the production of Aluminium were calculated by applying Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023.

4.4.4 NFR 2.C.5 Lead production and NFR 2.C.6 Zinc production

Only secondary lead production occurs in Greece. The mine output concentrates of the sole extraction site in Greece that contain lead and zinc are sent abroad for further processing.

The air pollutants associated to the secondary lead production were calculated by applying Tier 2 methodology with technology specific Tier 2 EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual production), were obtained from CRF Tables from UNFCCC inventory submission (original source of data is the Hellenic Statistical Authority). Activity data were also reported in NFR tables.

4.5 NFR 2.D.3-2.G Solvents and other Product use

4.5.1 NFR 2.D.3.a Domestic solvent use including fungicides

Category presents the emissions (mainly NMVOCs) from the domestic use of solvent containing products (including pharmaceuticals). This category does not include products for paint applications (this products are included in category 2.D.3.d "Coating applications"). Emissions of NMVOC associated to population of Greece were calculated by applying Tier 2 methodology with country specific EFs. According to a national study, emission factors of NMVOC associated to population of Greece are provided for the period 1996-2006 disaggregated in several subcategories, i.e. for Washing and cleaning products, for personal healthcare products, for cosmetics, for homeware and DIY products and for car care products. Utilizing these emissions factors, emissions are estimated for the same period, i.e. 1996-2006, while for the rest years, an extrapolation of emissions factors was performed based on the total consumption of relevant products for each sub-category, based on statistical data provided by the Hellenic Statistical Authority (www.statistics.gr)), i.e. on total annual purchases per capita.

Activity data derive from EUROSTAT database (http://ec.europa.eu/eurostat/data/database).

4.5.2 NFR 2.D.3.b Road paving with asphalt

Category presents the emissions from the road paving with asphalt. Emissions of PM10, PM2.5 associated to anual sales weight of asphalt mixture in Greece (with the assumption that 100% of sales used on road paving) were calculated by applying Tier 2 methodology, as described in from EMEP/EEA air pollutant emission inventory guidebook 2019, while emissions of NMVOC, TSP, and BC by applying Tier 1 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr).

4.5.3 NFR 2.D.3.c Asphalt roofing

Category presents the emissions from the asphalt roofing materials produced. Emissions of CO, NMVOC, TSP, PM10, PM2.5 and BC associated to anual product weight of roofing materials in Greece were calculated by applying Tier 1 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data calculated as the production of asphalt roofing materials (derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr)) in cylinders (m²) multiplied by an average weight of 4,5 kg/m² (based on bibliographic search the weight of asphalt roofing materials range from 2.5 to 6 kg/m²).

4.5.4 NFR 2.D.3.d Coating applications

Category presents the emissions from the coating application for decorative, industrial or other applications of paint (including lacquers and varnishes and excluding glues and adhesives use). Emissions of NMVOC associated to annual paint sales for different types of paint (assuming that 100% of sales used for coating applications) in Greece were calculated by applying Tier 2 methodology and country specific emission factors:

NMVOC emissions = Σ (ADi * Pi * EFj) where

- ADi: Activity data for every type (i) of paint used derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr), see Table 4-5.
- Pi: percentage figures of (i) type of paint used which consumed in one of the above three (j) coating applications (decorative, industrial and other) " are consistent throughout all the years, and they are derived from Sidiropoulos and Tsilingiridis, Improved sectoral allocation of NMVOC emissions from solvent use in Greece, Science of the Total Environment 407 (2009) 4075–4083, Table 9.
- Efj: emissions factors for each one (j) of the coating applications. For the period 1990-2006, emissions factors for each one (j) of the three coating applications derive from EMEP/EEA air pollutant emission inventory guidebook 2019. From 2007, it is considered that the DIRECTIVE 2004/42/CE of the European parliament and of the council of 21 April 2004, on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC, is applicable. In accordance with this directive, data presented in Table 4-6 are utilized as emission factors for the relevant years, from 2007 to 2010 and after 2010.

To be noted that for large Industrial plants, as per the Industrial Emissions Directive (Annex VII, Chapter 5, 2010/75/EU, Part 2, Annex VII, Activities 6 to 10), the following operations are included:: i. Vehicle coating (< 15) and vehicle refinishing ii. Coil coating iii. Other coating, including metal, plastic, textile (5), fabric, film and paper coating iv. Winding wire coating v. Coating of wooden surfaces It's important to clarify that vehicle coating is not practiced in Greece. The remaining activities are mostly carried out by smaller plants. Thus, it is considered that the emission factors utilized for decorative coating applications to be suitable for other categories, such as industrial coating applications and other coating activities, given that they pertain to small scale operations. Moreover, the differences between the emission factors (or emission limit values) of 2004/42/EU and 2010/75/EU is small and falls within the uncertainty threshold. For instance, the emission factor for Coil Coating is roughly 100 gr/lt under both 2004/42/EU

and 2010/75/EU. In the case of Wooden Surface Coating, the emission factor stands at 300gr/lt as per 2004/42/EU and approximately 200 to 250 gr/lt according to 2010/75/EU, depending the solvent density.

Table 4-4 Percentage of paint use on coating applications

	Percent	age of paint used	on
Type of paint	Decorative app.	Industrial app.	Other app.
Paints and varnishes, based on acrylic or vinyl polymers dispersed/dissolved in non-aqueous medium, weight of the solvent > 50 % of the solution weight including enamels and lacquers	0.05	0.85	0.10
Paints and varnishes, based on acrylic or vinyl polymers dispersed or dissolved in an aqueous medium (including enamels and lacquers)	0.40	0.40	0.20
Paints and varnishes, based on polyesters dispersed/dissolved in a non-aqueous medium, weight of the solvent > 50 % of the weight of the solution including enamels and lacquers	0.05	0.85	0.10
Paints and varnishes, based on polyesters dispersed/dissolved in a non-aqueous medium including enamels and lacquers excluding weight of the solvent > 50 % of the weight of the solution	0.05	0.85	0.10
Other paints and varnishes based on acrylic or vinyl polymers	0.05	0.85	0.10
Paints and varnishes: solutions n.e.c.	0.20	0.40	0.40
Other paints and varnishes based on synthetic polymers n.e.c.	0.20	0.40	0.40
Other paints, varnishes dispersed or dissolved in an aqueous medium	0.40	0.40	0.20
Painters fillings	0.05	0.80	0.15

Table 4-5 Activity data

Year	Decorative use (kg)	industrial use (kg)	Other use (kg)				
1990	18104029	37372929	12048710				
1991	18473499	38135642	12294602				
1992	18850509	38913920	12545512				
1993	19235214	39708082	12801543				
1994	21321273	45542956	14445139				
1995	22264214	43689769	14425078				
1996	22247208	44922029	14478554				
1997	23680798	47938259	15261844				
1998	25387987	49652675	16113298				
1999	26636211	51842784	16857946				
2000	27798596	54082968	17486300				
2001	26419195	59199991	17673655				
2002	28029187	63144616	18877615				
2003	35350790	77643992	23032826				
2004	33735369	77500200	22536776				
2005	34449760	78416099	23277823				
2006	37433574	80172512	24800827				
2007	38803037	85643806	25957062				
2008	33183660	73739740	22010502				
2009	31502491	65946317	20346419				
2010	34115470	72905993	22459348				
2011	32522012	73829609	21541166				
2012	25938434	61635302	17507272				
2013	28268950	64868394	18867267				
2014	28982118	65850572	20087003				
2015	31083395	66992757	22292131				
2016	34543039	73922619	24531142				
2017	37106393	76186366	25647247				
2018	35972140	83094536	27006858				
2019	41680827	94288297	30485278				
2020	42656311	94703351	30996282				
2021	40766163	89611946	29590188				
2022	41286727	91836039	29307546				

Table 4-6 Maximum VOC content limit values for paints and varnishes in accordance with DIRECTIVE 2004/42/CE of the European parliament and of the council of 21 April 2004

	Product Subcategory	Type	Phase I (g/l) (from 1.1.2007)	Phase II (g/l) (from 1.1.2010)
a	L. t	WB	75	30
	Interior matt walls and ceilings (Gloss <25@60°)	SB	400	30
b	Laterian 1 1 1 1 1 (C1 > 25 @ (00)	WB	150	100
	Interior glossy walls and ceilings (Gloss >25@60°)	SB	400	100
с	Exterior walls of mineral substrate	WB	75	40
	Exterior wans of ininieral substrate	SB	450	430
d	Interior/exterior trim and cladding paints for wood and	WB	150	130
	metal	SB	400	300
e	Interior/exterior trim varnishes and woodstains, including	WB	150	130
	opaque woodstains	SB	500	400
f	Interior and exterior minimal build woodstains	WB	150	130
	interior and exterior minimal build woodstains	SB	700	700
g	Primers	WB	50	30
	Filliers	SB	450	350
h	Binding primers	WB	50	30
	Bilding printers	SB	750	750
i	One-pack performance coatings	WB	140	140
	One-pack performance coatings	SB	600	500
j	Two-pack reactive performance coatings for specific end	WB	140	140
	use such as floors	SB	550	500
k	Multi calculations	WB	150	100
	Multi-coloured coatings	SB	400	100
1	Decemptive offect continue	WB	300	200
	Decorative effect coatings	SB	500	200

Water-borne coatings (WB)'

Solvent-borne coatings (SB)'

4.5.5 NFR 2.D.3.e Degreasing

Category presents the emissions from the cleaning process of industrial products (mainly metals) from water insoluble substances (grease, fats, oil etc). According to EMEP/EEA air pollutant emission inventory guidebook 2019, the most common organic solvents used are: methylene chloride (MC), tetrachloroethylene (PER), trichloroethylene (TRI), xylenes (XYL). Emissions of NMVOC associated to annual use (Product + Import - Export) of the above organic solvents were calculated by applying a compined Tier1/Tier3 methodology:

NMVOC emissions = ADxyl * EFxyl + Σ (ADi * Pi * EFi) where:

 ADxyl and ADi: Activity data for all organic solvents used derive from United Nation Statistics division (http://data.un.org/)

- EFxyl: emission factor for XYL derives from EMEP/EEA air pollutant emission inventory guidebook 2019 (Tier 1 method)
- Pi: percentage of the TRI, PER and MC (i) organic solvent used for degreasing applications derive from national studies.
- Efi: emissions factors for TRI, PER and MC (i) organic solvent derive from Sidiropoulos and Tsilingiridis, Improved sectoral allocation of NMVOC emissions from solvent use in Greece, Science of the Total Environment 407 (2009) 4075–4083, Table 6. This work has been developed based on an extensive market research/survey, combined with a literature review and expert opinion, to determine solvent utilization factors. With the aid of these usage factors, appropriate emission factors, national statistical activity data and the calculating formulas developed.

Table 4-7 Percentage and Emission Factors of organic solvent use on degreasing

Organic Solvent	Pi	EF (gr/kgsolvent)
methylene chloride (MC)	0.8	550
tetrachloroethylene (PER)	0.4	600
trichloroethylene (TRI)	0.8	850
xylenes (XYL)	1	460

Below is presented the contribution of each organic solvent (used on degreasing) to NMVOC emissions through the examined years.

As obtained by this Figure, emission fluctuations are attributed to the big fluctuations on xylenes (XYL) consumption in accordance with the official data provided by the United Nation Statistics division (http://data.un.org/). An explanation on the increased figures presented for the last years could be the increase on consumption following a decade with lower figures due to the economical crisis Greece faced.

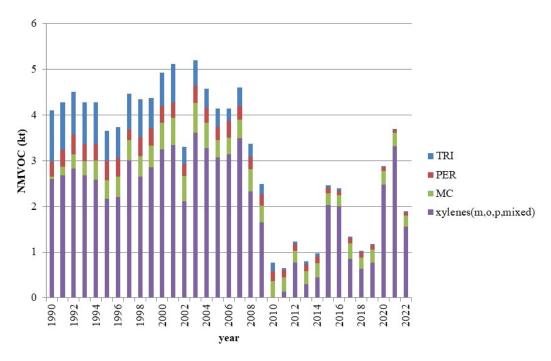


Figure 4-1 Contribution of organic solvents on NMVOC emissions due degreasing

4.5.6 NFR 2.D.3.f Dry cleaning

Category presents the emissions from the cleaning process of textiles (furs, leathers, etc) in order to remove contamination. Due to national studies the main organic solvents used for dry cleaning are: methylene chloride (MC), tetrachloroethylene (PER) and trichloroethylene (TRI). Emissions of NMVOC associated to annual use (Product + Import - Export) of the above organic solvents were calculated by applying a Tier3 methodology:

NMVOC emissions = Σ (ADi * Pi * EFi) where:

- ADi: Activity data for all organic solvents used derive from United Nation Statistics division (http://data.un.org/)
- Pi: percentage of the TRI, PER and MC (i) organic solvent used for dry cleaning application derive from national studies.
- Efi: emissions factors for TRI, PER and MC (i) organic solvent derive from national studies. Yo be noted that no implementation of reduction measures are considered in this activity.

Table 4-8 Percentage and Emission Factors of organic solvent use on dry cleaning

Organic Solvent	Pi	EF (gr/kgsolvent)
methylene chloride (MC)	0.2	550
tetrachloroethylene (PER)	0.6	600
trichloroethylene (TRI)	0.2	850

Total NMVOC emissions estimated below 1 kt per year with continuous decrease after 2007 resulting to 0.171 kt for year 2022.

4.5.7 NFR 2.D.3.g Chemical products

Category presents the emissions from the use of chemical products.

The following product groups and processes are taken into consideration under this category:

- > Polysterene foam processing
- > Polyurethane foam processing
- > Polyvinylchloride processing
- ➤ Glues manufacturing
- > Paints manufacturing
- > Inks manufacturing
- Asphalt blowing (roofing materials)
- Rubber processing
- > Shoes

Emissions from 'Fat, edible and non-edible oil extraction' estimated under 2.D.3.i category. Emissions for category 'Pharmaceutical products manufacturing' are zero.

Emissions of NMVOC, associated to total mass of products produced were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019.

Especially for the Glues manufacturing, Paints manufacturing and Inks, the EFs provided by the products' suppliers have been utilized varied from 11 g/kg product to 8 g/kg product.

Emissions of Benzo(α)pyrene, associated to the total mass of Asphalt blowing were calculated by applying Tier 1 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019, i.e. 4000 g/Mg asphalt.

Activity data (see Table 4-9 (a) and (b)) derive from:

- The Prodcom database of the Hellenic Statistical Authority (<u>www.statistics.gr</u>) for asphalt blowing, paints and ink manufacturing.
- EUROSTAT database (http://ec.europa.eu/eurostat/data/database) for Polyurethane foam processing, Polyvinylchloride processing, Glues and adhesive manufacturing, paints and ink manufacturing.

Table 4-9 (a) Activity data (kg)

Year	Polysterene	polyvinylchl oride	Polyurethan e	Glues and adhesives	Paints
1990	49739243	118409307	6801282	40723201	82604889
1991	48763964	116087556	6667924	41134546	83833665
1992	47807808	113811329	6537180	41550047	85092043
1993	46870400	111579735	6409000	41969744	86380582
1994	45951372	109391897	6283334	42393681	97335783
1995	45050365	107246958	6160131	42821900	95781591
1996	46929770	108751322	6056021	44950910	97950785
1997	46815350	118565819	8932486	46496370	99316629
1998	50318280	127986450	6969751	51031610	104879640
1999	47633044	109741028	5449327	43039830	108059378
2000	51183687	91440818	6055863	47567996	111786860
2001	54115285	90685595	4221416	43885274	114836887
2002	50199961	97825071	4544709	70773387	147951496
2003	55662686	81606484	5950621	65477036	210603211
2004	58843552	78708884	5891386	84068699	190667095
2005	60193875	66669970	5894353	77730290	202640138
2006	59655543	108639459	6317537	84790950	193075393
2007	67488422	114299753	6986677	91639036	201850753
2008	59286065	136863159	7273385	74639372	228989486
2009	53390423	58026880	6415485	65260550	210393308
2010	50464862	45010560	5668085	77069052	213412012
2011	45602351	28360408	5633485	70941083	200424840
2012	40986490	23573306	2277085	44938339	137562693
2013	33613354	27369644	1146770	28916413	139944167
2014	34253564	32427547	1545386	28971948	144736588
2015	38241399	26405367	1786476	33590088	151866116
2016	42828836	29055232	2367389	32268826	167160641
2017	47849167	31320599	-	34737917	182482974
2018	47963067	26782310	0	39535812	181934181
2019	49474423	33104041	0	45397704	205176335
2020	45319530	35767011	0	43965625	205144936
2021	52348107	52101396	0	43296194	211212675
2022	55713448	46546929	0	44172315	218584162

Table 4-9 (b) Activity data (kg) and per of shoes

Year	Inks	asphalt blowing	Rubber	Per of shoes
1990	4630936	8228646	13799796	4417589
1991	5507373	8228646	13529211	4507744
1992	5365853	8228646	13263933	4599739
1993	11718071	8228646	13003856	4693611
1994	13350553	9874375	12748878	4789399
1995	15783707	11849250	12498900	4887142
1996	19230044	14219100	10358200	5431390
1997	14045407	17062920	11273000	4939546
1998	11110184	20475504	19851500	4327157
1999	10664034	24570605	12620400	4075680
2000	13324329	47256438	12915200	4114235
2001	13857649	40221328	11508500	5118861
2002	12610717	38680862	11799000	4561647
2003	14658497	37565953	15179400	4835283
2004	16007488	38480725	15978200	4437133
2005	17685510	36640636	15038000	4758276
2006	15992216	38997689	18273100	4170719
2007	15754041	42267894	20842400	4472760
2008	15608797	35640668	19895300	4443620
2009	14635381	24290897	17897700	5394300
2010	16494344	23117697	17891800	3341391
2011	19762982	23729629	15184400	2682696
2012	13224908	16598447	16441900	2289258
2013	13531993	21262159	17877300	3422816
2014	12033828	12854907	14530600	5033699
2015	11962484	15013100	16280300	4676297
2016	14206691	19035104	12723300	7441994
2017	13672412	13080200	12222100	6088217
2018	15253367	13113018	10764600	6495692
2019	15362238	14095898	12661900	6131920
2020	9617361	18438256	15911239	4233837
2021	12860224	18438256	12917046	4233837
2022	14864970	18564227	12761285	5599980

4.5.8 NFR 2.D.3.h Printing

Category presents the emissions from the printing industry. Emissions of NMVOC associated to annual ink consumption in Greece (Product+Import-Export) were calculated by applying Tier 2 methodology with country specific emission factors based on data provided by the products' suppliers.

The development of the country-specific EF was based on data obtained from the "Questionnaires on the implementation of directive 1999/13/EC concerning the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations". The questionnaires of the directive 1999/13/EC contain NMVOC emission data from printing activities (category 2D3h). All categories identified by the Tier 2 method of the 2019 EEA GB were included in the questionnaire, namely heat-set offset, publication gravure, and flexography and rotogravure.

According to the emission data reported in the questionnaires for the reporting years 2008 and 2010, there was a decrease in emissions of about 50%, although similar AD (ink) was consumed in both years. The reduction of emissions is attributed (for almost the same AD of annual ink consumption from PRODCOM between the two years) to abatement technologies implemented by operators pursuant to the directive 1999/13/EC, IPPC directive, Paints directive and respective national legislation.

Thus, for the years till 2008, Tier 1 EF (500g NMVOC/ kg ink) is applied. The Tier 1 of the GB comes from IIASA (2008). For the years after 2008, it is considered a gradually reduction of the EF to 250g/kg for 2016, which is 50% lower compared to the year 2008, in order to reflect the effect of abatement measures.

Activity data derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr).

4.5.9 NFR 2.D.3.i Other solvent use

The following product groups and processes are taken into consideration under this category:

- Fat, edible and non-edible oil extraction
- > Application of glues and adhesives
- Preservation of wood

The NMVOC emissions from the application of glues and adhesives account up to 85% of the emission from the category. Any sharp decrease / increase and variation in sub-sector is caused by this category.

For the estimation of glues and adhesives, Tier 2 approach is used with default EF, i.e. 522 g/kg and 76% abatement efficiencies, as per 2019 GB. Activity data derive from the Prodcom database

of the Hellenic Statistical Authority. The trend of emissions just follows the trend of activity data, since the same EF is used for all years.

Emissions from the 'Underseal treatment and conservation of vehicles' and 'Vehicles dewaxing' are considered negligible, as it is indicated in the EMEP/EEA air pollutant emission inventory guidebook – 2019.

4.5.9.1 Fat, edible and non-edible oil extraction

The air pollutants NMVOC, TSP, PM10 and PM2.5 associated to oil extraction were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 for NMVOC and Tier 1 for the other emissions. Activity data derive from the FAOSTAT database (http://faostat.fao.org). Abatement efficiencies have been considered in accordance with EMEP/EEA air pollutant emission inventory guidebook 2019, approx. 80%. Activity data are provided in Table 4-9.

4.5.9.2 Application of glues and adhesives

NMVOC emissions associated to the application of adhesives were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Abatement efficiencies have been considered in accordance with EMEP/EEA air pollutant emission inventory guidebook 2019, from 76% to 87%. Activity data derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr). Activity data are provided in Table 4-9.

4.5.9.3 Preservation of wood

The air pollutants NMVOC and PAHs associated to wood preservation were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 for NMVOC and Tier 1 for the other emissions. Abatement efficiencies have been considered in accordance with EMEP/EEA air pollutant emission inventory guidebook 2019, approximately 37%. Activity data derive from the FAOSTAT database (http://faostat.fao.org). Activity data are provided in Table 4-10.

Table 4-10 Activity data

Year (t) adhesives (kg) Nood (m³) 1990 130010 51936829 748200 1991 116735 53663416 757500 1992 125978 55945347 665000 1993 127155 59967483 670000 1994 134034 63942055 670000 1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 <th></th> <th>Oil extraction</th> <th>glue and</th> <th>Preservation of</th>		Oil extraction	glue and	Preservation of
1990 130010 51936829 748200 1991 116735 53663416 757500 1992 125978 55945347 665000 1993 127155 59967483 670000 1994 134034 63942055 670000 1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957	Year			
1992 125978 55945347 665000 1993 127155 59967483 670000 1994 134034 63942055 670000 1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2010 157446 70731735	1990			
1993 127155 59967483 670000 1994 134034 63942055 670000 1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735	1991	116735	53663416	757500
1994 134034 63942055 670000 1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012	1992	125978	55945347	665000
1995 127376 55802260 700000 1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012	1993	127155	59967483	670000
1996 162407 60043100 700000 1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974	1994	134034	63942055	670000
1997 141762 71382910 423000 1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936	1995	127376	55802260	700000
1998 161230 70171690 528000 1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898	1996	162407	60043100	700000
1999 156187 70777300 549500 2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860	1997	141762	71382910	423000
2000 156696 62047214 835006 2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2018 148229 18360465	1998	161230	70171690	528000
2001 170146 53317127 785006 2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465	1999	156187	70777300	549500
2002 140394 108210158 992892 2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108	2000	156696	62047214	835006
2003 139839 71473726 1057956 2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751	2001	170146	53317127	785006
2004 125763 84717279 1032792 2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394	2002	140394	108210158	992892
2005 126556 77013994 1032792 2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2003	139839	71473726	1057956
2006 122169 80845762 1026000 2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2004	125763	84717279	1032792
2007 118853 88240957 1026000 2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2005	126556	77013994	1032792
2008 133708 71044753 596000 2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2006	122169	80845762	1026000
2009 132978 57195921 1099946 2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2007	118853	88240957	1026000
2010 157446 70731735 1110254 2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2008	133708	71044753	596000
2011 149804 66687749 1095779 2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2009	132978	57195921	1099946
2012 139757 40212012 444210 2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2010	157446	70731735	1110254
2013 162005 35792974 444200 2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2011	149804	66687749	1095779
2014 176091 31373936 444200 2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2012	139757	40212012	444210
2015 139871 26954898 444200 2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2013	162005	35792974	444200
2016 143558 22535860 444200 2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2014	176091	31373936	444200
2017 128665 18116822 404198 2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2015	139871	26954898	444200
2018 148229 18360465 474872 2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2016	143558	22535860	444200
2019 154700 18604108 487301 2020 178948 18847751 439114 2021 157735 19091394 439114	2017	128665	18116822	404198
2020 178948 18847751 439114 2021 157735 19091394 439114	2018	148229	18360465	474872
2021 157735 19091394 439114	2019	154700	18604108	487301
	2020	178948	18847751	439114
2022 149848 19335037 439114	2021	157735	19091394	439114
	2022	149848	19335037	439114

4.5.10 NFR 2.G Other product use

Category presents the emissions from the following activities from other uses of solvents:

- ➤ Use of fireworks
- Tobacco combustion
- Use of shoes

Below is presented the contribution of the above uses to NMVOC emissions through the examined years.

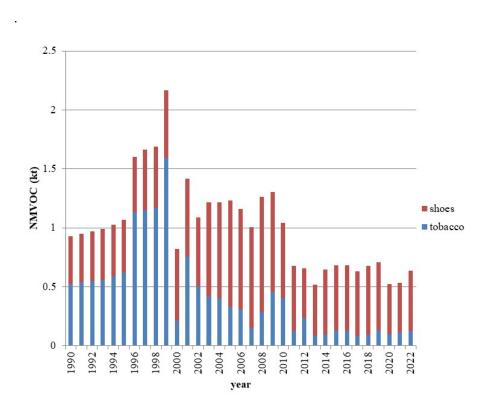


Figure 4-2 Contribution of other activities with solvent use on NMVOC emissions

4.5.10.1 Use of fireworks

Emissions of SO₂, CO, NOx, TSP, PM10, PM2.5, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn associated to annual mass of fireworks used in Greece (Product+Import-Export) were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data derive from the EUROSTAT database (http://ec.europa.eu/eurostat/data/database).

4.5.10.2 Tobacco combustion

Emissions of NOx, CO, NMVOC, NH₃, TSP, PM10, PM2.5, BC, Cd, Ni, Zn, Cu, PCDD/F, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene and Indeno(1,2,3-cd)pyrene

associated to annual mass of tobacco smoked (combusted) were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data derive from the EUROSTAT database (http://ec.europa.eu/eurostat/data/database) as pieces of cigars and cigarettes (Product+Import-Export) assuming that all of them smoked annually. Due to EMEP/EEA air pollutant emission inventory guidebook 2019 in order to find the mass of tobacco smoked we assume that 'one cigarette contains 1 gr of tobacco and one cigar contains 5 gr of tobacco'.

4.5.10.3 Use of shoes

Emissions of NMVOC associated to annual amount of shoe pairs used in Greece (Product+Import-Export assuming 100% use) were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data derive from the EUROSTAT database (http://ec.europa.eu/eurostat/data/database).

4.6 NFR 2.H Other processes

4.6.1 NFR 2.H.1 Pulp and paper industry

Since there is no pulp production in Greece (pulp for paper production is imported), the emissions of air pollutants of this subcategory were reported as NO (not occurred).

4.6.2 NFR 2.H.2 Food and beverages industry

Category presents the emissions from food and beverages manufacturing (except of vegetable oil extraction). The following products are taken into consideration under this category:

- ➤ Meat fish and poultry
- Sugar
- ➤ Margarine and solid cooking fats
- > Bread
- Biscuits
- > Animal feeds
- Coffee beans roast
- ➤ Wine
- ▶ Beer
- > Spirits

Emissions of NMVOC, associated to total mass of products produced were calculated by applying Tier 2 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. No abatement efficiencies have been considered, i.e. equal to 0%, following TERT 2022 recommendations. As per TERT consideration, although EMEP/EEA Guidebook 2019 includes commentary on application of a 90% abatement factor, many activities in category are typically unabated. Therefore, 0% abatement factor for all activities should be utilized as more conservative approach.

Activity data derive from the Prodcom database of the Hellenic Statistical Authority (www.statistics.gr), see Table 4-11 (a) and (b).

Note that activity data for beverage manufacturing are given in 'lt' for beer and wine and 'lt alc 100%' for spirits. This data were converted to kg of products by multiplying with 1gr/ml and 0.789gr/ml respectively (density of each bevearage derived from bibliographic search).

Below is presented the contribution of food and beverage production to NMVOC emissions through the examined years.

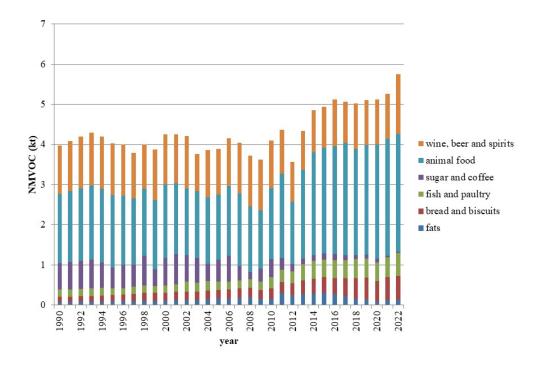


Figure 4-3 Contribution of food and beverage production on NMVOC emissions

Table 4-11 (a) Activity data

Year	Wine, Spirits (kg)	Poultry Meat (kg)	Meat Fish (kg)	Margarine and solid cooking fats (kg)	Bread (kg)
1990	602922178	76059407	15138406	43964605	30321858
1991	621515202	75959799	14973642	43994944	34262211
1992	644231348	76062034	14825626	44675651	38714810
1993	654770832	79441990	14644721	42556710	43746247
1994	647536762	82400870	14530391	43104503	46612390
1995	645439950	70699056	12054073	44456664	55796246
1996	634587904	63682040	12378240	46518469	58432934
1997	569919014	79891361	12440141	44706253	61904251
1998	555215688	80338105	12369127	51953637	70076435
1999	626648524	75162939	13830070	49867412	75755882
2000	627319326	76879913	13610393	55289037	73139407
2001	608629256	74260802	14946435	61755351	77901222
2002	647141317	111595563	17915166	59975382	74972400
2003	460915869	96443814	17528920	64067482	71035559
2004	588452015	101046700	17598365	68853766	81113933
2005	567173133	91532375	16118048	80155316	74329196
2006	600733553	85838016	16135450	79402209	78435374
2007	630606250	83067628	16931636	91536183	78328280
2008	633708262	85236082	19794301	96411727	82092666
2009	631571065	85438376	17691836	78934697	74634500
2010	595287447	113674842	31118314	74779626	97416166
2011	551366756	118490888	30335812	153618762	99468296
2012	498357456	130583251	20093649	128252722	106719653
2013	479373357	178156532	24789513	135488290	131241483
2014	525590662	193715794	27173452	148307108	138163970
2015	514163869	197665797	23970941	153830531	151517633
2016	584874753	194487377	23308178	141943263	160775220
2017	509693108	203693978	22891468	113342164	183759343
2018	563907081	215889312	22891594	72912689	223458443
2019	564467929	217152183	20834518	66784577	227723046
2020	559411451	210311252	18518395	46277256	210269112
2021	558682838	224528659	20438459	62939891	234981947
2022	745710084	263451023	21215922	68272804	236756482

Biscuits Sugar Coffee beans Animal feeds Beer Year

Table 4-11 (b) Activity data

4.6.3 NFR 2.H.3 Other industrial processes

Emissions of air pollutants of this subcategory were reported as NO (not occurred) as it thought to be insignificant (EMEP/EEA air pollutant emission inventory guidebook 2019).

4.7 NFR 2.I Wood processing

Category presents the emissions from wood processing.

The following wood products are taken into consideration under this category:

- > Coniferous and non coniferous wood,
- > Other wood products (crates, drums hand tools, handles etc)
- ➤ Wood boards (Fibreboard compressed or not, Hardboard, MDF/HDF, Particle board and OSB, Plywood, Veneer sheets, Sawlogs and veneer logs)

Emissions of TSP associated to annual mass of wood products in Greece were calculated by applying Tier 1 methodology with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019.

Activity data derive from:

- The Prodcom database of the Hellenic Statistical Authority (<u>www.statistics.gr</u>) for coniferous and non coniferous wood and other wood products (in kg)
- The FAOSTAT database (http://faostat.fao.org) for wood boards (in m³). This data were converted to kg of products by multiplying with an average density for every board derived from bibliographic search.

Table 4-12 Average wood board density values used

Wood Boards	Average density (kg/m³)
Fibreboard	650
Hardboard	1100
MDF/HDF	950
Other fibreboard	425
Particle board and OSB	650
Plywood	550
Veneer sheets	400
Sawlogs and veneer logs, coniferous	460
Sawlogs and veneer logs, non-coniferous	670

4.8 NFR 2.J Production of POPs

Emissions of air pollutants of this subcategory were reported as not estimated (NE) or not applicable (NA) as 'assumed to be negligible especially when compared to the use of POPs' (EMEP/EEA air pollutant emission inventory guidebook 2019).

4.9 NFR 2.K "Consumption of POPs and heavy metals (e.g. electrical and scientific equipment)"

Emissions of air pollutants of this subcategory were reported as not estimated (NE) or not applicable (NA) as assumed to be insignificant (EMEP/EEA air pollutant emission inventory guidebook 2019).

4.10 NFR 2.L Other production, consumption, storage, transportation or handling of bulk products

Emissions of air pollutants of this subcategory were reported as NO (not occurred) as it thought to be insignificant (EMEP/EEA air pollutant emission inventory guidebook 2019).

4.11 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory. Improvements that are associated to key categories will be prioritized.

4.12 Recalculations

2D3b, 2D3c, 2D3e, 2D3i, 2G and 2H2. Emissions have been slightly recalculated, for 2020 and 2021 due to updated activity data.

5. Agriculture (CRF sector 3)

5.1 Sector Overview

This chapter includes information on the methodologies applied for estimating emissions of airpollutants, as well as references for activity data and emission factors concerning **Agriculture** sector from 1990 to 2022 in Greece, corresponding to the data reported in category 3 of the NFR format. Emissions addressed in this chapter include emissions from the subcategories:

- 3.B Manure Management,
- 3.D Agricultural Soils
- 3.F Field Burning of Agricultural Residues and
- 3.I Agriculture other.

5.2 General description

5.2.1 Completeness

Table 5-1 provides information on the status of emission estimates of all sub categories. A " \checkmark " indicates that emissions from this sub category have been estimated. Emissions were not calculated (NA), only for categories and pollutants that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook -2019.

Table 5-1 Overview of sub-categories of agriculture and status of estimation in Greece's agriculture inventory

	NA
3.B. MANURE MANAGEMENT MANAGEMENT 3.B.1 Cattle Cattle 3.B.1.a Dairy Cattle V NA V V NA NA 3.B.1.b Non-Dairy Cattle V NA V V NA NA 3.B.2 Sheep V V NA V V NA NA 3.B.3 Swine V V NA V V NA NA 3.B.4 Other Livestock Suffalo V V NA V V NA NA 3.B.4.a Goats V V NA V V NA NA	NA NA NA NA
3.B.1.a Dairy Cattle ✓ ✓ NA ✓ ✓ NA	NA NA NA NA
3.B.1.b Non-Dairy Cattle ✓ ✓ NA ✓ ✓ NA NA 3.B.2 Sheep ✓ ✓ NA ✓ ✓ NA NA 3.B.3 Swine ✓ ✓ NA V ✓ NA NA 3.B.4 Other Livestock Interpretable of the control of the	NA NA NA NA
3.B.2 Sheep ✓ ✓ NA ✓ ✓ NA <	NA NA NA
3.B.3 Swine ✓ ✓ NA ✓ ✓ NA <	NA NA NA
3.B.4 Other Livestock 3.B.4.a Buffalo	NA NA
3.B.4.a Buffalo ✓ ✓ NA ✓ ✓ NA NA 3.B.4.d Goats ✓ ✓ NA ✓ ✓ NA NA	NA
3.B.4.d Goats	NA
5131.76	
3.B.4.e Horses	
	NA
3.B.4.f Mules and asses	NA
3.B.4.g Poultry	
.i Laying hens	NA
.ii Broilers	NA
.iii Turkeys 🗸 🗸 NA 🗸 🗸 NA NA	NA
.iv Other poultry	NA
3.B.4.h Other Animals (Rabbits) NA V NA NA NA NA NA NA NA	NA
3.D AGRICULTURAL SOILS	
3.D.a.1 Inorganic N fertilizers ✓ NA NA V NA NA NA NA NA	NA
3.D.a.2 Organic N fertilizers	
.a Animal manure applied to soils Animal manure applied NA NA	NA
b Sewage sludge applied to soils ✓ NA NA ✓ NA NA NA NA NA NA	NA
Other organic fertilisers .c applied to soils (including compost) NO NA	NA
3.D.a.3 Urine and dung deposited by grazing animals V NA	NA
3.D.a.4 Crop residues NA NA NA NA NA NA NA NA	NA
3.D.b Indirect emissions from managed soils NA	NA
Farm-level agricultural operations including 3.D.c storage, handling and transport of agricultural products	NO
3.D.d Off-farm storage, handling and transport of bulk agricultural products	NA
3.D.e Cultivated crops NA 🗸 NA NA NA NA NA NA NA	NA
3.D.f Use of pesticides NO NO NO NO NO NO NO NO NO	NE
FIELD BURNING OF AGRI-CULTURAL RESIDUES	✓
3.I AGRICULTURE OTHER NA	NA

5.2.2 Key Categories

Key category analysis is presented in Chapter 1.5. Key sources within this category are presented in Table 5-2.

Table 5-2 Key sources of NFR sector 3 Agriculture

NFR Category	Category Name	Pollutant	KS-assessment
3B1a	Manure management - Dairy cattle	NH3	Т
3B1a	Manure management - Dairy cattle	NMVOC	Т
3B1b	Manure management - Non-dairy cattle	NH3	L,T
3B2	Manure management – Sheep	NH3	L
3B4gi	Manure mangement - Laying hens	NH3	L,T
3B4gii	Manure mangement - Broilers	NH3	L,T
3.D.a.1	Inorganic N-fertilizers (includes also urea application)	NH3	L,T
3.D.a.1	Inorganic N-fertilizers (includes also urea application)	NOx	L
3.D.a.2.a	Animal manure applied to soils	NH3	L,T
3.D.a.2.a	Animal manure applied to soils	NMVOC	L,T
3.D.a.3.	Urine and dung deposited by grazing animals	NH3	L,T
3.D.a.3.	Urine and dung deposited by grazing animals	NOx	L
3.F	Field burning of agricultural residues	PM2.5	L

5.2.3 Uncertainty Assessment

The method used for the assessment of uncertainty is according to the EMEP/EEA air pollutant emission inventory guidebook 2019 (EEA 2019). Further information on the uncertainty assessment of activity data can be found in Greece's National Inventory Report. Where no specific information on uncertainties of emission factors was available, an average of the default values, based on the definitions of the qualitative ratings given in the EMEP/EEA Emission Inventory Guidebook 2019 is used. Please refer to Chapter 1.7 for further information about uncertainty.

5.2.4 Methodology

Table 5-3 summarizes the methodology that is applied per pollutant and category.

Table 5-3 Summary of methodologies used in Greece's agriculture inventory

NFR cate	gory					NH3	NMVOC	Other
3.B	MANURE I	MANAGEN	IENT					
3.B.1	Cattle	3.B.1.a	Dairy Cattle			Tier 2	Tier 2	Tier 1
		3.B.1.b	Non-dairy Cattle			Tier 2	Tier 2	Tier 1
3.B.2	Sheep					Tier 2	Tier 2	Tier 1
3.B.3	Swine					Tier 2	Tier 2	Tier 1
3.B.4	Other livestock	3.B.4.a	Buffalo			Tier 2	Tier 2	Tier 1
		3.B.4.d	Goats			Tier 2	Tier 2	Tier 1
		3.B.4.e	Horses			Tier 2	Tier 2	Tier 1
		3.B.4.f	Mules & Asses			Tier 2	Tier 2	Tier 1
		3.B.4.g	Poultry	3.B.4.g.i	Laying hens	Tier 2	Tier 2	Tier 1
				3.B.4.g.ii	Broiler	Tier 2	Tier 2	Tier 1
				3.B.4.g.iii	Turkey	Tier 2	Tier 2	Tier 1
				3.B.4.g.iv	Ducks & Geese	Tier 2	Tier 2	Tier 1
		3.B.4.h	Other animal (Rabbits)			Tier 2	Tier 2	-
3.D	AGRICULT	URAL SOIL	S					
3.D.a		3.D.a.1	Inorganic N fertilize	rs		Tier 2	-	Tier 1
		3.D.a.2	Organic N fertilizers	3.D.a.2.a	Animal manure applied to soils	Tier 1/2	Tier 2	Tier 1
				3.D.a.2.b	Sewage sludge applied to soils	Tier 1	-	Tier 1
				3.D.a.2.c	Other organic fertilisers applied to soils (including compost)	Tier 1	-	Tier 1
		3.D.a.3	Urine and dung dep	osited by grazin	ng animals	Tier 2	Tier 2	Tier 1
		3.D.a.4	Crop residues			Tier 1	-	Tier 1
3.D.b	Indirect emis	sions from m	anaged soils			Tier 1	-	Tier 1
3.D.c	Farm-level ag		erations including stor	age, handling a	nd transport of	Tier 1	-	Tier 1
3.D.d			and transport of bulk	agricultural pr	oducts	Tier 1	-	Tier 1
3.D.e	Cultivated crops					Tier 1	Tier 2	Tier 1
3.D.f	Use of pestici	•				-	-	-
3.F	FIELD BURNING OF AGRI-CULTURAL RESIDUES					Tier 1	Tier 1	Tier 1 (PM2.5/ PM10 Tier 2)
3.1	AGRICULT	URE OTHE	R			-	-	-

5.3 NFR 3.B Manure Management

5.3.1 Methodological Issues

The Tier 2 methodology was used for the calculation of NH₃ emissions from all animals.

The emissions for NH₃ calculated for Manure application and Grazed pastures are reported in subcategories 3Da2a and 3Da3, respectively, as proposed in EMEP/EEA air pollutant emission

inventory guidebook 2019. Only NH₃ emissions from Housing, storage and yards are reported in 3B.

5.3.2 Activity data

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of the emissions of air pollutants that are presented in this report and NFR tables. Other sources of activity data (mainly EUROSTAT) were used, in the cases of categories that the GHG inventory submission to UNFCCC did not include any relevant data. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC and in the following chapters.

5.3.3 Manure management systems per animal species

For all the animal species, it is considered for the whole of period 1990-2022, the shares of manure management systems per animal species is constant, without any change.

Dairy Cattle

For the estimation of the dairy cattle manure management systems' allocation, information received by several agricultural experts was utilized:

- the Ministry of Rural Development and Food,
- the Greek Regions with high population of animals (Ipiros, Thessalia etc.),
- the Hellenic statistical Authority (EL.STAT.) and
- the Technological Educational Institute of Thessaloniki.

According to this information:

- In old farms and in farms with small population of animals (<30), only solid management practice is performed using manure piles.
- In new units with high population of dairy cattle (>30) manure is either stored in piles or separation of liquid-solid is performed. Solid is stored to piles, while liquid is stored to tanks.
- Where liquid-solid separation of manure is performed, in about 40% of the total dairy cattle farms, 15% of solid is drifted by the liquid, and thus, this solid part of manure is treated under liquid conditions.

• 8% of the total produced manure from the dairy cattle remains in pasture / range / paddock.

Therefore, the produced manure that is managed in liquid systems is:

$$f_{\text{solid}} = 40\% * 15\% = 6\%$$

Given that 8 % of the animal remains in pasture / range / paddock the real solid treated in liquid systems is:

Solid manure treated in liquid systems = 6 %* 92% of total solid produced manure or

Solid manure treated in liquid systems = 5.52 % of total solid produced manure

While the rest (94% * 92% = 86.48%) of total solid produced manure) is treated by solid manure management systems (i.e. manure piles).

However, further to TERT 2022 recommendations, it is considered that approximately the ³/₄ of TAN remains in urine and only the ¹/₄ goes to faeces.

Since 40 % of the produced manure is separated to liquid and solid, while 15% of solid manure drifts with the liquid, the liquid product of the separation contains 75% of TAN, which is in the liquid phase, as well as 3.75% (=15%*25%), which is 15% of the remaining 25% of TAN contained in solid. Thus, the propotion of TAN treated in liquid manure management systems is estimated as follows:

The propotion of TAN that is treated in slurry systems is:

TAN propotion in slurry systems = 40% * 75.75 % *92%

TAN propotion in slurry systems = 28.98%

While the rest TAN is treated by solid manure management systems (i.e. manure piles).

Other Cattle and Buffalo

The allocation of manure to animal waste management systems of other cattle and buffalo results as follows. Almost the 60% of them, the animal in age of 1 year and older, remain in pasture for about seven months per year while the young animal remain mainly in stall. For the rest of the time, all the other cattle are in stall. Thus, it is estimated that about 33% of the produced manure by other cattle fall in pasture while the rest is mainly managed in Solid storage and dry lot systems.

Swine

The majority of swine in Greece remain in properly designed building infrastructures and their manure is managed with liquid systems according to Greek legislation. A small share of swine's manure, about 10%, is managed with solid systems. This share mainly represents the manure produced by swine live in small production units.

Sheep, goats, poultry, Rabbits

The allocation of manure to animal waste management systems of other animal, like sheep, goats and poultry were estimated utilizing information received by several agricultural experts. The contacted experts are from:

- the Ministry of Rural Development and Food,
- the Greek Regions with high population of animals (Ipiros, Thessalia etc.),
- the Hellenic statistical Authority (EL.STAT.) and
- the Technological Educational Institute of Thessaloniki.

According to this information, almost all the poultry and Rabbits manure is treated with solid practices, while for sheep and goats, only for the 10% of their lives they remain in stables while the other time are in pasture. However, the collection of their manure from the stables is performed only two times per year.

Horses and Mules and ashes

It is estimated that all manure of Horses and Mules and ashes remains in pasture / range / paddock.

5.3.4 Emissions from Cattle (3.B.1)

Cattle (dairy and non-dairy) is responsible for NH₃, NO_x, NMVOC, and Particulate Matter (TSP, PM10 and PM2.5) emissions. The air pollutants associated to Cattle were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions and Tier 1 methodology / EFs for the other emissions from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data (number of heads) and other parameters e.g. N Excretion kg, % TAN

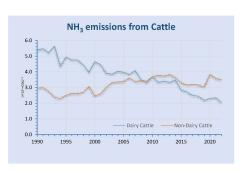


Figure 5-1 Calculated emissions for NH3 from 1990 till 2022 for Cattle in Greece.

excr, Housed period and % excreta on yards, were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables.

For the estimation of NH₃ emissions from cattle, Tier 2 approach was developed following EMEP / EEA air pollutant emission inventory guidebook 2019, utilizing country specific data for the parameters which are avalaible.

For the estimations of annual nitrogen excretion rate for dairy cattle, the proposed methodology Tier 2 IPCC 2006 Guidelines (EQUATION 10.31 and EQUATION 10.32) is utilized considering crude protein in diet percent (CP) by 16.5%. For the other cattle, annual nitrogen excretion rates were estimated following the Tier 1 approach proposed by 2006 IPCC Guidelines, considering Nrate 0.35 and TAM 425 kg.

Table 5-4 Pameters for NH3 emissions estimation

	Nex	Prop	Livestock	Straw,	N added in	Housing	%	EF
	(kg/yr)	TAN	management	kg/yr	bedding,	period, d	excreta	(kg a ⁻¹
			practices		kg/animal/yr		on	AAP^{-1}
							yards	NH3)
Dairy	116.3	0.60	Pasture: 8%	1607	6.43	326	25	25.44
cattle			Liquid systems:					
			28.98%					
			Solid storage and					
			dry lot: 63.02%					
Non-	54.99	0.60	Pasture: 33%	577.9	2.31	231	10	7.1
dairy			Daily spread: 3%					
cattle			Solid storage and					
			dry lot: 64					

In Figure 5-1, the calculated emissions from 1990 till 2020 for NH₃ are presented.

Regarding NMVOC emissions Tier 2 method presented in the 2019 EMEP/EEA Guidebook is utilized for the whole population of each animal type. For dairy Cattle, it is considered that feed with silage was used since for more than 90% of their life they are housed and fed with silage in the stalls. For Non-Dairy Cattle, feed without silage is considered since their high majority is grazing animals with small or no silage feeding.

5.3.5 Emissions from Sheep (3.B.2)

Sheep is responsible for NH₃, NO_x, NMVOC, and Particulate Matter (TSP, PM10 and PM2.5) emissions. The air pollutants associated to Sheep were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions and Tier 1 methodology / EFs for the other emissions from EMEP/EEA air pollutant emission inventory guidebook 2016 and 2019. Activity data (number of heads) and other parameters e.g. N Excretion kg, % TAN excr, Housed period and % excreta on yards, were obtained from CRF Tables from UNFCCC

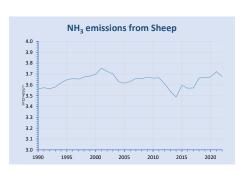


Figure 5-2 Calculated emissions for NH3 from 1990 till 2022 for Sheep in Greece.

inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables. In Figure 5-2, the calculated emissions for NH₃ from 1990 till 2021 are presented.

For the estimation of NH₃ and NMVOC emissions from sheep, Tier 2 approach was developed following EMEP / EEA air pollutant emission inventory guidebook 2019, utilizing country specific data for the parameters which are avalaible as they are presented in Table 5-5 for 2022.

	Nex (kg/yr)	Prop TAN	Livestock management practices	Straw, kg/yr	N added in bedding, kg/animal/yr	Housing period, d	% excreta on yards	EF (kg a ⁻¹ AAP ⁻¹ NH3)
Sheep	14.9	0.50	Solid storage and	20	0.08	30	2	0.4
			dry lot: 10%					
			Pasture: 90%					

Table 5-5 Pameters for NH3 emissions estimation

As it is obtained from this table, mean EF for sheep is estimated equal to the proposed figures from EEA air pollutant emission inventory guidebook.

Regarding NMVOC emissions Tier 2 method presented in the 2019 EMEP/EEA Guidebook is utilized for the whole population of each animal type. For Sheep, feed without silage is considered since their high majority is grazing animals without silage feeding.

5.3.6 Emissions from Swine (3.B.3)

Swine is responsible for NH₃, NO_x, NMVOC, and Particulate Matter (TSP, PM10 and PM2.5) emissions. The air pollutants associated to Swine were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions and Tier 1 methodology / EFs for the other emissions from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data (number of heads, distribution to fattening pigs, sows, weaners etc) and other parameters e.g. N Excretion kg, % TAN excr, Housed period and % excreta on yards, were obtained from NIR 2024.

For the estimation of NH₃ emissions from swine, Tier 2 approach was developed following EMEP / EEA air pollutant emission inventory guidebook 2019, utilizing country specific data for the parameters which are avalaible as they are presented in Table 5-6 for 2022.

In Figure 5-3, the calculated emissions for NH₃ from 1990 till 2022 are presented.

	Nex	Prop	Livestock	Straw,	N added in	Housing	%	EF
	(kg/yr)	TAN	management	kg/yr	bedding,	period, d	excreta	(kg a ⁻¹
			practices		kg/animal/yr		on	AAP^{-1}
			_				yards	NH3)
Swine	13.51	0.70	Liquid systems:	200	0.80	365	0	4.46
			90%					
			Solid storage and					
			dry lot: 10%					

Table 5-6 Pameters for NH3 emissions estimation

As it is obtained from this table, mean EF for swine is estimated in the range of the the proposed figures from EEA air pollutant emission inventory guidebook.

Regarding NMVOC emissions Tier 2 method presented in the 2019 EMEP/EEA Guidebook is utilized.

PM emissions are estimated for Fattening pigs, for Weaners and for Sows utilizing proposed figures of Table 3.5, 2019 EMEP/EEA Guidebook, i.e.:

Fattening pigs: EF for TSP: $1.05 \text{ kg } AAP^{-1} \text{ a}^{-1}$, EF for PM10: $0.14 \text{ kg } AAP^{-1} \text{ a}^{-1}$ and EF for PM2.5: $0.006 \text{ kg } AAP^{-1} \text{ a}^{-1}$

Weaners: EF for TSP: 0.27 kg AAP^{-1} a^{-1} , EF for PM10: 0.05 kg AAP^{-1} a^{-1} and EF for PM2.5: 0.002 kg AAP^{-1} a^{-1}

Sows: EF for TSP: $0.62 \text{ kg AAP}^{-1} \text{ a}^{-1}$, EF for PM10: $0.17 \text{ kg AAP}^{-1} \text{ a}^{-1}$ and EF for PM2.5: $0.01 \text{ kg AAP}^{-1} \text{ a}^{-1}$

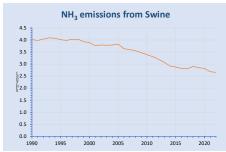


Figure 5-3 Calculated emissions for NH3 from 1990 till 2022 for Swine in Greece.

5.3.7 Emissions from Other livestoke (3.B.4.a, d, e, f and h)

Under the Other Livestoke category the following sub-categories are included.

- Buffalo
- Goats
- Horses
- Mules & Asses
- Other animal(Rabbits)

Poultry is presented in a separated section.

These subcategories are responsible for NH₃, NO_x, NMVOC, and Particulate Matter (TSP, PM10 and PM2.5) emissions. The air pollutants were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 for NH3 and NMVOC and Tier 1 for the other emissions. Activity data (number of heads) were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables. PM2.5, PM10 and TSP emissions were calculated in accordance with the Tier 1 method from the 2019 EMEP/EEA Guidebook following TERT for Horses and Mules & Asses.

Regarding NMVOC emissions Tier 2 method presented in the 2019 EMEP/EEA Guidebook is utilized for the whole population of each animal type:

- 1. For Buffalo, it is considered that they are bred in modern facilities where they are fed with silage, even though for most of the time are not housed.
- 2. For goats, feed silage is considered since their majority is fed with silage, although they are not housed because it is very common in Greece, especially in small units, goats to be fed with silage at fields where not high amount of feed can be found.
- 3. For Horses, feed without silage is considered since their high majority is grazing animals with small or no silage feeding.

4. For Mules and Asses, feed without silage is considered since their high majority is grazing animals with small or no silage feeding.

5.3.8 Emissions from Poultry (3.B.4.g)

Poultry is responsible for NH₃, NO_x, NMVOC, and Particulate Matter (TSP, PM10 and PM2.5) emissions. The air pollutants were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions and Tier 1 methodology / EFs for the other poultry emissions from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data (number of heads) and other parameters e.g. N Excretion kg, % TAN excr, Housed period and % excreta on yards, were obtained from CRF Tables from UNFCCC inventory submission while the distribution in hens, broilers, turkeys, etc were obtained from (EUROSTAT, 2020). The activity data are reported in Table 5-7.

In Figure 5-4, the calculated emissions for NH3 from 1990 till 2022 are presented.

For the estimation of NH₃ emissions from all poultry Tier 2 approach was developed following EMEP / EEA air pollutant emission inventory guidebook 2019, utilizing country specific data for the parameters which are avalaible as they are presented in Table 5-8 for 2022.

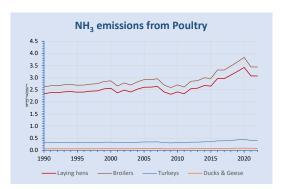


Figure 5-4 Calculated emissions for NH3 from 1990 till 2022 for Poultry in Greece.

Table 5-7 The population of Other livestock (Poultry) ((in 1000s) in Greece.

Year	Total	Laying hens	Broilers	Others	Turkeys	Ducks & Geese
		(i)	(ii)		(iii)	(iv)
1990	28282	7495	20193	594	451	143
1991	28843	7643	20594	606	460	145
1992	28818	7637	20576	605	460	145
1993	29256	<i>7753</i>	20889	614	467	147
1994	29379	7785	20976	617	469	148
1995	29059	7701	20748	610	464	146
1996	29157	7727	20818	612	465	147
1997	29583	7840	21122	621	472	149
1998	29704	7872	21209	624	474	150
1999	30727	8143	21939	645	490	155
2000	31010	8218	22141	651	495	156
2001	28714	7609	20502	603	458	145
2002	30088	7973	21483	632	480	152
2003	29134	7721	20802	612	465	147
2004	30587	8106	21839	642	488	154
2005	31566	8365	22538	663	504	159
2006	31599	8374	22562	664	504	159
2007	31949	8466	22812	671	510	161
2008	29141	7722	20807	612	465	147
2009	28022	7426	20008	588	447	141
2010	29209	7740	20856	613	466	147
2011	28262	7489	20179	593	451	142
2012	30804	8163	21994	647	492	155
2013	31078	8236	22190	653	496	157
2014	32362	8576	23106	680	516	163
2015	32111	8509	22927	674	512	162
2016	35857	9502	25602	753	572	181
2017	35823	9493	25578	<i>752</i>	572	181
2018	37605	9665	26850	790	600	184
2019	39497	10467	28201	829	630	199
2020	41459	10987	29602	871	662	209
2021	37193	9856	26556	781	594	187
2022	37185	9854	26550	780	593	187

Table 5-8 Pameters for NH3 emissions estimation

	Nex	Prop	Livestock	Straw,	N added in	Housing	%	EF
	(kg/yr)	TAN	management	kg/yr	bedding,	period, d	excreta	(kg a ⁻¹
			practices		kg/animal/yr		on	AAP^{-1}
							yards	NH3)
Laying	0.77	0.70	Solid storage and	0	0.00	365	0	0.31
hens			dry lot: 100%					
Broilers	0.36	0.70	Solid storage and	0	0.00	365	0	0.13
			dry lot: 100%					
Turkeys	1.67	0.70	Solid storage and	0	0.00	365	0	0.68
			dry lot: 100%					
Ducks	1.26	0.70	Solid storage and	0	0.00	365	0	0.43
			dry lot: 100%					

As it is obtained from this table, mean EF for all poultry are estimated in the range of the the proposed figures from EEA air pollutant emission inventory guidebook.

5.3.9 Emissions from Other (Rabbits) (3.B.4.h)

Rabbits are responsible for NH3 and NMVOC emissions. The air pollutants were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. To be noted that since EMEP/EEA air pollutant emission inventory guidebook 2019 does not provide relevant parameters for Tier 2 approach, the figures provided for Broilers were utilized in order to fulfil the recommendation from TERT during 2022 Review of national air pollution inventory, for NH3 emissions from rabbits calculation.

5.4 NFR 3.D Crop production and agricultural soils

5.4.1 Methodological Issues

The Tier 1 and Tier 2 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 was used to calculate the emissions from all subcategories.

The emissions for NH₃ calculated for Manure application and Grazed pastures are reported in subcategories 3Da2a and 3Da3, respectively, as proposed in EMEP/EEA air pollutant emission inventory guidebook 2019.

5.4.2 Activity data

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of the emissions of air pollutants that are presented in this report and NFR tables. Other sources of activity data (mainly EUROSTAT and Hellenic Fertilizer' Association³) were used, in the cases of categories that the GHG inventory submission to UNFCCC did not include any relevant data. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC and in the following chapters. It should be noted that the development of the Tier 2 approach on the estimation of NH₃ emissions from inorganic fertilizers was based on activity data (i.e. annual nitrogen fertilizer consumption per fertilizer type) and the technical assistance on the footprint of existing conditions in Greece relevant to soil pH and urease inhibitors utilization, which was provided by the the Hellenic Fertilizer' Association.

5.4.3 Emissions from Inorganic fertilizers (includes urea) (3.D.a.1)

Inorganic fertilizers are responsible for NH₃, NO_x and PM emissions. The air pollutants associated to Inorganic fertilizers were calculated by applying Tier 2 methodology for NH₃ emissions, with EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 and Tier 1 methodology / EFs for the other emissions from EMEP/EEA air pollutant emission inventory guidebook 2019. Activity data (kg of Inorganic N fertilizers per fertilizer type, as it is required from the application of Tier 2 approach) were obtained from the Hellenic Fertilizer' Association.

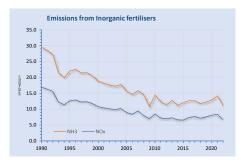


Figure 5-5 Calculated emissions for NH3 and NOx from 1990 till 2022 from Inorganic fertilizers in Greece.

³ Former name of the association: Pan-Hellenic Association of Professional Fertilizers Producers & Dealers (PHAPFPD)

In accordance with Hellenic Fertilizer' Association, in Greece since 2012, urease inhibitors are utilized for some nitrogen fertilizer types in order to decrease the nitrogen emissions. In particular, , it is estimated a gradually increase on urease inhibitors utilization from 0% in 2012 to approximately 45% for 2017 of the total annual urea consumption.

Relevant to the reduction of relevant ammonia emissions, the figure of 70% is considered as presented in the 2014 UNECE Ammonia Abatement Guidance document (https://www.clrtap-tfrn.org/content/options-ammonia-abatement-guidance-unece-task-force-reactive-nitrogen).

For the other nitrogen fertilizers, no urease inhibitor is considered.

For emissions estimation, proposed EFs for each N fertilizer type from 2016 EEA Guidebook, Chapter 3.D Crop production and agricultural soils, Page 17, Table 3.2 for Climate Temperate were utilized.

It must be clarified that in accordance with 2016 EEA Guidebook, Chapter 3.D Crop production and agricultural soils, Page 14, Table 3.1, Tier 1 default NH3 EFs is 0.05 kgNH3/kg N applied fertilizer, while in accordance with Table 3.2, EFs for NH3 emissions calculation with Tier 2 methodology for some fertilizer types EF is significantly higher. For example for AS, EF is between 0.092-0.17 kgNH3/kg N and for urea 0.159-0.168 kgNH3/kg N. Given the fact that the total applied N fertilizer in Greece contains more than 15% of these two types of fertilizers results on the calculation of a IEF approximately 0.064 kgNH3/kg N, i.e. 27% higher than the default one.

As per Pan-Hellenic Association of Professional Fertilizers Producers & Dealers (PHAPFPD), the Fertilizer distribution according to pH are these presented in Table 5-9.

Table 5-9 Fertilizer distribution according to pH for Greece (%)

	Normal pH	High pH	
AS	15	85	
CAN	85	15	
AN	45	55	
Urea	55	45	
Other straight N compounds	55	45	
NP/NPK	45	55	

In Table 5-10 below, the applied emission factors for each N fertilizer type are provided.

Normal pH High pH Utilized figures AS 92 170 158.3 CAN 8 17 9.35 AN 16 33 25.35 Urea 159 168 163.05 Other straight N compounds 14 20 16.7 NP/NPK 67 94 81.85

Table 5-10 Applied emission factors for each N fertilizer type (in g NH₃ (kg N applied)⁻¹)

In Figure 5-5, the calculated emissions for NH₃ and NOx from 1990 till 2021 are presented.

The steep decrease observed for the years 1993 and 1994 is due to the cut backs in public incentives for the use of synthetic fertilizers.

The decrease in the use of synthetic nitrogen fertilizers could probably be attributed to an increase in non fertilized farming, the price of fertilizer and the impact of initiatives to promote good practice in fertilizer use. Additionally, the annual changes in the amount of fertilizers used and the agricultural production are the basic factors that account for the fluctuation of emissions during the period 1990 - 2020.

5.4.4 Emissions from Organic fertilizers (3.D.a.2)

Emissions for NH₃, NMVOC and NO_x from Organic fertilizers are calculated in this chapter. The air pollutants associated to organic fertilizers were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions from animals and Tier 1 for the other subcategories as per EMEP/EEA air pollutant emission inventory guidebook 2019. In this category, three subcategories are included.

- Livestock manure applied to soils (3.D.a.2.a). EFs for NH₃ and NMVOC (calculated in 3.B) and NO_x are available.
- Sewage sludge applied to soils (3.D.a.2.b). EFs only for NH₃ are available
- Other organic fertilisers applied to soils (including compost) (3.D.a.2.c). EFs for NH₃) and NO_x are available.

Activity data (kg of Organic N fertilizers per fertilizer type, as it is required from the application of Tier 2 approach) were obtained from the Hellenic Fertilizer' Association. The activity data were also reported in NFR tables and in Chapters 5.3.3, 5.3.5 and 5.3.7.. For Sewage sludge applied to soils (3.D.a.2.b), the country's population was utilised as obtained from EUROSTAT.

For 3.D.a.2.a, the total amount of NH₃ and NMVOC was calculated as the sum of NH₃ and NMVOC, respectively, emissions calculated in each subcategory of 3.B.

For 3.D.a.2.c, no emissions are reported since there is a small number of waste-composting facilities of municipal solid waste in Greece, while, as per existing available information, produced compost is not used to agriculture. As per existing information, produced compost is ended up in Managed Solid Waste Disposal Sites. Once official available data are found to approve that compost from waste facilities is applied to agriculture, relevant emissions or NE notification, if it is bellow threshold of significance, will be reported.

5.4.5 Emissions from Urine and dung deposited by grazing livestock (3.D.a.3)

Emissions for NH₃, NMVOC and NO_x from Urine and dung deposited by grazing livestock are calculated in this chapter. The air pollutants associated to this subcategory were calculated by applying Tier 2 methodology for NH₃ and NMVOC emissions as per EMEP/EEA air pollutant emission inventory guidebook 2019.

Activity data (kg of N excretion on pasture, range and paddock) were obtained from CRF Tables from UNFCCC inventory submission. The activity data were also reported in NFR tables.

For NH₃ and NMVOC emissions, the total amount of ammonia was calculated as the sum of NH₃ and NMVOC emissions calculated in each subcategory of 3.B, respectively. For NOx, the kg of N excretion on pasture, range and paddock were used.

In Figure 5-6, the calculated emissions for NH3 and NOx from 1990 till 2022 are presented.

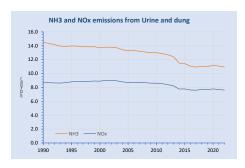


Figure 5-6 Calculated emissions for NH3 and NOx from 1990 till 2022 from Urine and dung deposited by grazing livestock in Greece.

5.4.6 Emissions from Crop residues applied to soils (3.D.a.4)

No emissions factors are available for this subcategory.

5.4.7 Indirect emissions from managed soils (3.D.b)

No emissions factors are available for this category.

5.4.8 Emissions from Farm-level agricultural operations including storage, handling and transport of agricultural products (3.D.c)

Emissions for PM from Farm-level agricultural operations including storage, handling and transport of agricultural products are calculated in this chapter. The air pollutants associated to this subcategory were calculated by applying Tier 1 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2019.

Activity data (ha of Croplands per year) were obtained from EUROSTAT.

5.4.9 Emissions from Off-farm storage, handling and transport of bulk agricultural products (3.D.d)

No emissions factors are available for this category.

5.4.10 Emissions from Cultivated crops (3.D.e)

Emissions for NMVOC from Cultivated crops are calculated in this chapter. The air pollutants associated to this subcategory were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2019.

Activity data (ha of Croplands per year) were obtained from EUROSTAT.

5.4.11 Emissions from the Use of pesticides (3.D.f)

Following a recommendation from TERT during 2020 Review of national air pollution inventory, Greece investigates the HCB emissions from Pesticides use in collaboration with the responsible department of Ministry of Rural Development and Food to keep the national registry relevant to the pesticides use in Greece, i.e. the Directorate General of Agriculture, Directorate of Plant Production Protection. As it was concluded, most of the pesticides reported in the EMEP/EEA Guidebook have been forbidden for use in Greece before 2010. The only pesticides forbidden after 2010, actually from 2016 up to day, or going to be forbidden up to 2021, are those containing Clopyralid.

However, as it was concluded, the collection of the relevant data consumption for these pesticides was not performed since there is not systematic recording of their consumption.

For this reason, Greece will report as 'NE' said emissions, up to the time that official data consumption are available, or a suitable methodology for the estimation of the pesticides use is developed.

5.5 NFR 3.F Field Burning of Agricultural Residues

5.5.1 Methodological Issues

The Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2019 was used to calculate the emissions from all subcategories, apart from PM2.5 and PM10 where Tier 2 approach, as it is described by EMEP/EEA air pollutant emission inventory guidebook 2019, is used.

5.5.2 Activity data

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of the emissions of air pollutants that are presented in this report and NFR tables. A description of the activity data is included in the National Inventory Report of Greece (NIR) under the UNFCCC and in the following chapters.

To be noted that during the UNFCCC review of NIR 2022, the following categories were included in the estimation of GHGs emissions from 3.F Field burning of agricultural residues, (see NIR 2023):

Sorghum, Veltch, Bitter Veltch, Lupine, Veltching (Lathyrus), Clover seeds, Groundnuts, Soya seed, Rapeseed, Barley, Oats, Veltch, Clovers – Multiannua (alfalfa, etc), Clovers – Annual, Grass cut for hey, Onions, fresh, Onions, dry, Garlic, dry, Peas, Carots, Beens, Others.

Aforementioned categories are also taken into acount in the emissions of air pollutants that are presented in this report and NFR tables.

5.5.3 Emissions from Field burning of agricultural residues (3.F)

The air pollutants associated to Field burning of agricultural residues were calculated by applying Tier 2 (For PM2.5 and PM10) and Tier 1 (For other emissioms) methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2019. A planned improvement for the next submission is the calculation of PM10 and TSP by a Tier 2 method, too.

Activity data (kg of total biomass burned) were obtained from CRF Tables from UNFCCC inventory submission. The activity data were also reported in NFR tables.

5.6 NFR 3.I Agriculture other

No activity data have been reported.

5.7 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory. Improvements that are associated to key categories will be prioritized.

5.8 Recalculations

For categories 3B Manure Management and 3D Agricultural Soils, pollutants NH₃ and NO_X and for all years 1990-2021 were revised based on EMEP/EEA Guidebook and 2019.

For category 3B4h Manure management - Other animals (rabbits), NH3 emissions were estimated for first time in the current submissions based on EMEP/EEA Guidebook and 2019.

For category 3Da1 Inorganic N-fertilizers (includes also urea application), NH3 emissions were recalculated for the years 2013-2021, considering emission reduction coefficient of 70%, as presented in the 2014 UNECE Ammonia Abatement Guidance document (https://www.clrtap-tfrn.org/content/options-ammonia-abatement-guidance-unece-task-force-reactive-nitrogen).

For categories 3Da2a Animal manure applied to soils and 3Da3 Urine and dung deposited by grazing animals, NMVOC emissions were estimated for first time in the current submissions based on EMEP/EEA Guidebook and 2019, Tier 2 approach.

For category 3De Cultivated crops, NMVOC emissions and for all years 1990-2021 were revised based on EMEP/EEA Guidebook 2019, utilizing Tier 2 approach.

WASTE (NFR SECTOR 5)

6.1 Sector Overview

This chapter includes information on and descriptions of methodologies applied for estimating emissions of airpollutants, as well as references for activity data and emission factors concerning waste management and treatment activities reported under NFR Category 5 Waste for the period from 1990 to 2022.

Emissions addressed in this chapter include emissions from the subcategories:

- ➤ Solid Waste Disposal on Land (NFR Sector 5.A);
- Composting (NRF Sector 5.B);
- ➤ Waste Incineration (NFR Sector 5.C);
- ➤ Wastewater Handling (NFR Sector 5.D); and
- > Other waste ((NFR Sector 5.E).

6.1.1.1 Completeness

Table 6-1 provides information on the status of emission estimates of all sub categories. A "V" indicates that emissions from this sub category have been estimated. Emissions were not estimated (NE), only for categories and pollutants that there is no methodology included in the EMEP/EEA air pollutant emission inventory guidebook -2023.

Emissions of subcategory 5.D.2 were reported under 5.D.1 (IE).

6.1.1.2 Key Categories

Key category analysis is presented in Chapter 1.5. Key sources within this category are presented in Table 6-2.

6.1.1.3 Uncertainty Assessment

The method used for the assessment of uncertainty is according to the EMEP/EEA air pollutant emission inventory guidebook 2023 (EEA 2023). Further information on the uncertainty

assessment of activity data can be found in Greece's National Inventory Report. Where no specific information on uncertainties of emission factors was available, an average of the default values, based on the definitions of the qualitative ratings given in the EMEP/EEA Emission Inventory Guidebook 2023 is used. Please refer to chapter 1.7 for further information about uncertainty.

Table 6-1 Completeness of sub-categories in NFR Sector 5 Waste.

NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	00	Pb	р	Hg	As	ڻ	Cu	Ē	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	HCB	PCBs
5A	NA	٧	NA	NE	٧	٧	٧	NA	NE	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA						
5B1	NE	NE	NE	٧	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA									
5B2	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1a	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1bi	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE	٧	NE	NE	٧	NE	NE	NE	NE	٧	٧	NA
5C1bii	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1biii	٧	٧	٧	NE	NE	NE	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	NE	NE	٧	NE	NE	NE	NE	٧	٧	٧
5C1biv	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1bv	NE	NE	NE	NE	٧	٧	٧	NE	NE	NE	NE	NE	NE	NE	NE											
5C1bvi	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C2	٧	٧	٧	NE	٧	٧	٧	٧	٧	٧	٧	NE	٧	٧	٧	NE	٧	٧	NE	٧	٧	٧	NE	٧	NE	NA
5D1	NA	٧	NA	NE	NE	NE	NE	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA								
5D2	IE	ΙE	IE	ΙE	IE	ΙE	IE	ΙE	IE	ΙE	ΙE	ΙE	ΙE	ΙE	ΙE	IE										
5D3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5E	NE	NE	NE	NA	٧	٧	٧	NE	NE	٧	٧	٧	٧	٧	٧	NE	NE	NE	٧	NE	NE	NE	NE	NE	NE	NE

Table 6-2 Key sources of NFR sector 5 Waste.

NFR Category	Category Name	Pollutant	KS-assessment
5C2	Open burning of waste	PM2.5	L,T

L = Level Assessment 2022

T = Trend Assessment 2022/1990

6.1.2 Methodological issues

Methodology and emission factors

Table 6-3 summarizes the methodology that is applied per pollutant and category. Some clarifications about this table:

- ✓ T1 refers to Tier 1 methodology with default EFs from EMEP/EEA air pollutant emission inventory guidebook 2023.
- ✓ T2 refers to Tier 2 technology specific activity data and EFs. The source of technology specific Tier 2 EFs is the EMEP/EEA air pollutant emission inventory guidebook 2023.

Activity data

If available, exactly the same data, which have been used for the estimation of GHG emissions for UNFCCC reporting, were used for the estimation of the emissions of air pollutants that are presented in this report and NFR tables. Other sources of activity data (mainly the Hellenic Statistical Authority) were used, in the cases of categories that the GHG inventory submission to UNFCCC did not include any relevant data. A description of the activity data is included in the National Inventory Report of Greece under the UNFCCC and in the following chapters.

Table 6-3 Methodology that is applied per pollutant and category of sub categories in sector 5 Waste.

				•																						
NFR code	NOx (as NO2)	NMVOC	SOx (as SO2)	NH3	PM2.5	PM10	TSP	BC	00	Pb	р	Hg	As	رد	Cu	ï	Se	Zn	PCDD/ PCDF (dioxins/ furans)	benzo(a) pyrene	benzo(b) fluoranthene	benzo(k) fluoranthene	Indeno (1,2,3-cd)	Total 1-4	HCB	PCBs
5A	NA	CS	NA	NE	T1	T1	T1	NA	NE	NA	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA						
5B1	NE	NE	NE	T2	NE	NE	NE	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA									
5B2	NO	NO	NO	T1	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1a	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1bi	T1	T1	T1	NE	T1	T1	T1	T1	T1	T1	T1	T1	T1	NE	NE	T1	NE	NE	T1	NE	NE	NE	NE	T1	T1	NA
5C1bii	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	ОИ	NO	NO	NO	NO	NO	NO
5C1biii	T1	T1	T1	NE	NE	NE	T1	T1	T1	T1	T1	T1	T1	T1	T1	T1	NE	NE	T3/T2	NE	NE	NE	NE	T1	T1	T1
5C1biv	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C1bv	NE	NE	NE	NE	T2	T2	T2	NE	NE	NE	NE	NE	NE	NE	NE											
5C1bvi	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5C2	T2	T2	T2	NE	T2	T2	T2	T2	T2	T2	T2	NE	T2	T2	T2	NE	T2	T2	NE	T2	T2	T2	NE	T2	NE	NA
5D1	NA	T1	NA	NE	NE	NE	NE	NE	NA	NE	NA	NA	NA	NA	NA	NA	NA	NA								
5D2	IE	IE	IE	IE	ΙE	ΙE	IE	IE	IE	IE	IE	ΙE	ΙE	IE	IE	IE	ΙE	ΙE	IE	IE	IE	ΙE	IE	IE	IE	IE
5D3	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5E	NE	NE	NE	NA	T2	T2	T2	NE	NE	T2	T2	T2	T2	T2	T2	NE	NE	NE	T2	NE	NE	NE	NE	NE	NE	NE

6.2 NFR 5.A Waste Disposal on Land

Solid waste disposal on land is responsible for NMVOC, TSP, PM10 and PM2.5 emissions. For the municipal solid waste, for the period 2001-2022 the official data provided by the MEEN (Ministry of Environment and Energy) was used. Concerning the data for the period 1960-2000 total quantities of generated waste were estimated according to studies by the Waste management sector of the MEEN. This data include construction and demolition waste.

The air pollutants except NMVOC associated to solid waste disposal on land were calculated by applying Tier 1 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. For NMVOC, a CS methodology was developed to estimate for all years a NMVOC EF for 5A on the basis of CH4 emissions reported in the framework of the UNFCCC reporting. To do so, CH4 emission ratio per tonne of disposed waste was used, converted it into a volume of CH4 per tonne of disposed waste and then into a volume of biogas per tonne of disposed waste (applying the fraction of CH4 in biogas F = 50%) and then the fraction of NMVOC in biogas (5.65 g/m3 of landfill gas), presented in the note at the bottom of table 3-1, chapter 5A of the 2019 EMEP/EEA GB.

Activity data (i.e. annual amount of waste) were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables.

6.3 NFR 5.B Composting

NH3 emissions associated to composting were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. In addition, NH3 emissions associated to anaerobic digestion at biogas facilities were estimated by applying the Tier 1 method from the GB. Activity data (i.e. annual amount of waste) were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables.

6.4 NFR 5.C Incineration and open burning of waste

Incineration of municipal waste is not permitted in Greece. Emissions of air pollutants from the incineration of clinical waste were reported under this category. For the incineration of clinical waste, a central plant, the only existing in Greece, covers the total daily needs of hospitals in Athens (reported under category 5C1biii).

Moreover, emissions from the incineration of biogenic agricultural residues produced in slaughterhouses (reported under category 5C1bv) and from the incineration of small amounts of industrial chemical waste (reported under category 5C1bi) are estimated. For these estimations, data provided by the Hellenic Statistical Authority as waste incinerated without energy recovery in Greece. These data were obtained by individual researches of ELSTAT. Activity data (i.e. annual amount of waste) were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables (categories 5C1bi, 5C1biii and 5C1biv).

For the first time in 2022 submission, the emissions associated with the cremation of human bodies were reported. Cremation of human bodies was commenced in 2019 in Greece. The respective emissions were reported under the category 5C1bv by applying tier 1 methodology from the 2019 GB. The number of human bodies, which were cremated, are: 1380 in 2019, 1800 in 2020, 2600 in 2021 and 2800 in 2022.

The air pollutants associated to clinical and industrial waste incineration were calculated by applying Tier 1 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023, with the exception of PCDD/ PCDF (dioxins/ furans) emissions from clinical waste incineration. These emissions were recalculated in the 2023 submission by applying a Tier 3/2 method. A combined use of Tier 3 facility data; and the development of country specific EFs based on these data, which are applied for the years that plant specific data are not available was followed. The air pollutants associated to the incineration of biogenic agricultural residues produced in slaughterhouses were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023 (sheep burn).

The emissions associated to the open burning of agriculture waste at orchards of woody plantations were estimated by applying the Tier 2 method from the 2023 EEA GB. Annual activity data about orcards were provided by the Hellenic Statistical Authority.

The burning of crop residues is reported under category NFR 3.F. Off-field crop and forest residue burning is happening only for energy purposes (e.g. burning of olive kernels). The burning of these residues is reported under energy sector (fuel: biomass).

6.5 NFR 5.D Wastewater handling

NMVOC emissions associated to wastewater handling were calculated by applying Tier 1 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual amount of wastewater) were obtained from CRF Tables from UNFCCC inventory submission. Please refer to the NIR (UNFCCC) for more details. The activity data were also reported in NFR tables (in million m3 waste water per year). These data have been estimated by using the total population of Greece (the population data reported in the CRF table 5.D) and the

paremeter 0.15m3 wastewater per person per day (which is based on literature search and expert judgement). We consider that this estimation covers the volume of both domestic and industrial wastewater production in Greece (including latrines⁴). Concerning the EF of NMVOC, we applied the tier 1 method with default EF from the 2023 GB (i.e. 15mg/m3).

6.6 NFR 5.E Other waste

TSP, PM10, PM2.5, heavy metals and PCDD/PCDF emissions associated to car, residential and industrial buildings fires were reported under this category. Emissions were calculated by applying Tier 2 methodology / EFs from EMEP/EEA air pollutant emission inventory guidebook 2023. Activity data (i.e. annual fire events, type of fire) were obtained from fire service of Greece (Table 6-4). The activity data were also reported in NFR tables.

Table 6-4	Activity data of	category 5E	(number o	of fire events)
-----------	------------------	-------------	-----------	-----------------

Year	Car fire	Detached house fire	Undetached house fire	Appartment building fire	Industrial building fire	Total fire events
2013	119	73.5	176.5	133	301	803
2014	120	68	163	122	263	736
2015	118	79	190	144	339	870
2016	137	201	229	125	206	898
2017	155	140	259	147	275	976
2018	137	140	226	139	274	916
2019	151	155	235	146	268	955
2020	146	164	239	153	275	977
2021	174	192	285	170	312	1133
2022	183	190	299	181	337	1190

6.7 Planned improvements

Based on the findings of EU internal audits and UNECE reviews, actions will be planned and executed that may lead to recalculations / improvements of the inventory. Improvements that are associated to key categories will be prioritized.

⁴ A minor number of latrines exist in remote areas of Greece.

6.8 Recalculations

There were no recalculations in the 2024 submission.

7. Recalculations and improvements

7.1 Explanations and justifications for recalculations

The recalculations made are driven by the results of the internal QA/QC checks and the recommendations of the 2023 NECD Comprehensive Review pursuant to the Directive on National Emissions Ceilings for certain Atmospheric Pollutants (Directive (EU) 2016/2284 or 'NECD'). Moreover, recalculations are also driven by internal QA/QC checks, ESD and UNFCCC reviews of the GHG inventory, in particular for the cases of air pollution emission source categories that are associated to the same activity data with GHG emission source categories.

The reasons for observed recalculations compared to previous submissions of NFR tables, can be classified as follows:

- > Changes or refinements in methods. A methodological change because of the use of the latest version of EMEP/EEA air pollutant emission inventory guidebook; a change in the Tier of the estimation method that was applied; use of plant facility data from E-PRTR or other source.
- > Inclusion of new sources. A new source is defined as a source for which estimates (all or some gases) did not exist in previous inventories either due to lack of data or because it has just been identified.
- > *Allocation*. Changes in allocation of emissions to different sectors or sources/sub-sources.
- > Correction of errors. This case concerns errors during calculating emissions (e.g. transcript errors) or while filling in the required information in the NFR tables. Inconsistencies resolving is also included in this category.
- > Updated activity data.

7.2 Recalculations, including in response to the review process, and planned improvements

An inventory improvement procedure is in place, which utilizes:

- a) the recommendations from NECD review reports;
- b) the findings of annual internal audits taken place by MEEN personnel; and
- c) the output of key category analysis, uncertainty analysis and QA/QC procedures;

as a basis to prioritize, plan and materialize future improvements and recalculations. Details on the resulted recalculations and improvements planned per source/sink category have been presented in

the respective chapters (Chapters 3-6). Information regarding the implementation of 2023 NECD Review recommendations is presented in Table 7-1.

Finally, it should be mentioned that the results and the proposals that will arise from the review of the present inventory, within the technical review process defined in NECD, will be integrated in the plan for the improvement of the NEC emissions inventory.

Table 7-1 Recommendations from the NECD Review 2023

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
GR-0A-2023-0001	The TERT noted that the national total and national total for compliance (NECD) for the pollutant SO_2 and year 2005 is not calculated as expected. This should equal the national total, adjusted for any agreed adjustments and flexibilities (NECD), use of the fuel used option for road transport (where applicable), and for NO_X and $NMVOC$ emissions subtraction of emissions from NFR categories 3B and 3D. The value for 1A3dii is not formatted as a number in the NFR, therefore the national total and national totals for compliance are not calculated correctly in the file; the national total should be 585.3804 not 549.4804. To the question on the issue Greece agreed to correct this in the next submission.	Implemented	NFR tables
	The TERT recommends that Greece check that values in the NFR cells are formatted as numbers to enable correct function of formulas, e.g. the value for SO ₂ for 1A3dii, in the 2024 submission.		
GR-1A2b-2023-0001	For 1A2b Stationary combustion in manufacturing industries and construction: Non-ferrous metals, for NH ₃ and all years, the TERT notes that there is a lack of transparency regarding the notation key 'NE' being used. This does not relate to an over- or under-estimate of emissions. Greece does not combust biomass in this sector and this is the only fuel type for which emission factors are provided in the 2019 EMEP/EEA Guidebook. However, in accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used, for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant.	Implemented	NFR tables
	The TERT therefore recommends that Greece change the notation key to 'NA' in the 2024 submission.		
GR-1A2c-2023-0001	For 1A2c Stationary combustion in manufacturing industries and construction: Chemicals, pollutant NH ₃ and years 1990-2021, the TERT notes that there is a lack of transparency regarding use of the notation key 'NE'. This does not relate to an over- or under-estimate of emissions. In accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used, for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant. In response to a question raised during the review, Greece agreed with the proposal.	Implemented	NFR tables
	The TERT recommends that Greece use the notation key 'NA' for this sector and pollutant where appropriate in the 2024 submission.		
GR-1A2d-2023-0001	For 1A2d Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print, for pollutant NH ₃ and years 1990-1998 and 2003-2012, the TERT notes that there is a lack of transparency regarding the notation key 'NE' being used. This does not relate to an over- or under-estimate of emissions. In	Implemented	NFR tables

Recommendation	Improvement made/planned	Reference (Sections) into IIR
accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used, for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant. In response to a question raised during the review, Greece agreed with the proposal.		
The TERT recommends that Greece use the notation key 'NA' for this sector and pollutant in the 2024 submission.		
For 1A2f Stationary combustion in manufacturing industries and construction: Non-metallic minerals, for NH ₃ and years 1990-2004, the TERT notes that there is a lack of transparency regarding the reporting of zero emissions. This does not relate to an over- or under-estimate of emissions. In many years zero emissions have been reported for this source, when notation keys should have been used. In response to a question raised during the review, Greece explained that they agreed with this proposal. The TERT recommends that Greece use notation keys rather than report zero emissions for this sector and pollutant in subsequent submissions.	Implemented	NFR tables
For category 1A3bi Road transport: Passenger cars, pollutant NMVOC, the TERT notes that Greece has the highest Implied Emission Factor (IEF) when compared to the other Member States for the year 2021. In response to a question raised during the review, Greece explained that the vehicle stock of Greece includes relatively old vehicles, thus with higher emissions. They also stated that the 2021 IEF for NMVOCs is similar to those of the previous years. The TERT recommends that Greece include this explanation in the next IIR.	Due to the reconstruction of the fleet composition, resulting from new statistical data leading to diversified fuel distribution for each vehicle category, as well as the implementation of the new version of Copert v.5.7.3, recalculations were carried out. Consequently, the IEF of NMVOC for the year 2021 has been revised to 0.119447 t/TJ,	Section 3.2.3
	accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used, for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant. In response to a question raised during the review, Greece agreed with the proposal. The TERT recommends that Greece use the notation key 'NA' for this sector and pollutant in the 2024 submission. For 1A2f Stationary combustion in manufacturing industries and construction: Non-metallic minerals, for NH3 and years 1990-2004, the TERT notes that there is a lack of transparency regarding the reporting of zero emissions. This does not relate to an over- or under-estimate of emissions. In many years zero emissions have been reported for this source, when notation keys should have been used. In response to a question raised during the review, Greece explained that they agreed with this proposal. The TERT recommends that Greece use notation keys rather than report zero emissions for this sector and pollutant in subsequent submissions. For category 1A3bi Road transport: Passenger cars, pollutant NMVOC, the TERT notes that Greece has the highest Implied Emission Factor (IEF) when compared to the other Member States for the year 2021. In response to a question raised during the review, Greece explained that the vehicle stock of Greece includes relatively old vehicles, thus with higher emissions. They also stated that the 2021 IEF for NMVOCs is similar to those of the previous years.	accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used, for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant. In response to a question raised during the review, Greece agreed with the proposal. The TERT recommends that Greece use the notation key 'NA' for this sector and pollutant in the 2024 submission. For 1A2f Stationary combustion in manufacturing industries and construction: Non-metallic minerals, for NH ₃ and years 1990-2004, the TERT notes that there is a lack of transparency regarding the reporting of zero emissions. This does not relate to a nover- or under-estimate of emissions. In many years zero emissions have been reported for this source, when notation keys should have been used. In response to a question raised during the review, Greece explained that they agreed with this proposal. The TERT recommends that Greece use notation keys rather than report zero emissions for this sector and pollutant in subsequent submissions. For category 1A3bi Road transport: Passenger cars, pollutant NMVOC, the TERT notes that Greece has the highest Implied Emission Factor (IEF) when compared to the other Member States for the year 2021. In response to a question raised during the review, Greece explained that the vehicle stock of Greece includes relatively old vehicles, thus with higher emissions. They also stated that the 2021 IEF for NMVOCs is similar to those of the previous years. The TERT recommends that Greece include this explanation in the next IIR. Due to the reconstruction of the fleet composition, resulting from new statistical data leading to diversified fuel distribution for each vehicle category, as well as the implementation of the new version of Copert v.5.7.3, recalculations were carried out. Consequently, the IEF of NMVOC for the year 2021 has been revised

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
		For the year 2022, the IEF is reported as 0.1124 t/TJ. It is important to note that Greece's vehicle stock includes relatively old vehicles, thus resulting	
GR-1A3di(i)-2023-0001	For category 1A3di(i) International maritime navigation - Memo Item and year 2019, the TERT notes that emissions of PM _{2.5} are unexpectedly equal to PM ₁₀ (12.13 kt). In response to a question raised during the review, Greece explained that there has been a clerical error in the reporting of PM ₁₀ emissions and that the correct value should be 14.3385 kt, and that they will correct this in the next submission. The TERT notes that the issue is related to a non-mandatory category. The TERT recommends that Greece provide the correct value for PM ₁₀ in the 2024 submission.	in higher emissions. Recalculations were performed for the pollutants NOx, CO, NMVOC, TSP, PM2.5, PM10, and BC in category 1A3di(i) 'International maritime navigation' for the entire time series.	NFR tables and Section 3.2.8
GR-1A3dii-2023-0002	For categories 1A3dii National navigation (shipping) and 1A3di(i) International maritime navigation - Memo Item, the TERT notes that SO ₂ emissions are reduced by 85% and 60% respectively between years 2019 and 2020 in the 2023 submission. The TERT notes that this reduction trend may be due to a reduction in sulphur content in fuel and it is related to the implementation of previous revised estimates, https://emrt-necd.eionet.europa.eu/2022/GR-1A3dii-2022-0001. In response to a question raised during the review, Greece explained that emissions have decreased substantially in 2020, due to the decrease of sulphur content in fuel (for diesel from 1% to 0.1% and for high and low sulphur oil from 3.5% and 1.5% to 0.5%), and they will add this information in their next IIR. The TERT recommends that Greece outline the sulphur content assumptions for all years in the 2024 IIR submission.	Implemented	Section 3.2.5
GR-1A3dii-2023-0003	For category 1A3dii National navigation (shipping), SO ₂ , NO _x , NMVOC, PM _{2.5} , PM ₁₀ and year 2019, the TERT notes that in the IIR page 76 (Table 3-19), fuel consumption for domestic navigation is 26,613 TJ while the activity data reported in the NFR table is 29,309 TJ. In response to a question raised during the review, Greece clarified that the correct value should be 26,613 TJ and they will correct this in the next submission. They also confirmed that the reported emissions for category 1A3dii for the year 2019 for all pollutants are correct and have not been affected by the clerical error in the transfer of fuel consumption in the NFR tables. The TERT recommends that Greece provide correct activity data in the 2024 submission.	The correct value is 23,621.9 TJ (Liquid fuel) and 17.64 TJ (Biomass). The value has been corrected the NFR Tables as well as in the IIR Report.	NFR tables and Table 3-19 of Section 3.2.5

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
GR-1A3ei-2023-0001	For category 1A3ei Pipeline transport and years 2001-2010 and 2016, the TERT notes that emissions are not reported for pollutant SO ₂ . The TERT would expect emissions to be reported as small amounts of sulphur in natural gas is used as an indicator of leaks. In response to a question raised during the review, Greece said that they will investigate this issue with DESFA (Natural Gas Transmission Company in Greece) and report emissions in the next submission. The TERT notes that the issue is below the threshold of significance for a technical correction. The TERT recommends that Greece report SO ₂ emissions from 1A3ei for all relevant years in the 2024	There is no methodology to estimate SO2 emissions from this source in 2023 EEA GB.	
GR-1A4ai-2023-0001	submission. For 1A4ai Commercial/Institutional: Stationary, pollutant NH ₃ and years 1990-2021, the TERT notes that there is a lack of transparency regarding the notation key 'NO' being used. This does not relate to an over- or under-estimate of emissions. Emissions of this pollutant do not occur as Greece do not combust biomass in this sector and NH ₃ emission factors only exist for this fuel type in the 2019 EMEP/EEA Guidebook. However, in accordance with the 2023 Guidelines for Reporting Emissions and Projections Data under the Convention on Long-range Transboundary Air Pollution, paragraph 12(d), the notation key 'NA' should be used for activities under a given source category that do occur within the Party but do not result in emissions of a specific pollutant. The notation key 'NO' should only be used for categories or processes within a particular source category that do not occur within a Party.	Implemented	NFR tables
GR-2A5a-2023-0001	The TERT therefore recommends that Greece change the notation key to 'NA' in the 2024 submission. For category 2A5a Quarrying and mining of minerals other than coal, PM _{2.5} , PM ₁₀ , and TSP and all years, the TERT notes that a Tier 1 method is used for a key category. The TERT acknowledges the answers provided by Greece during this review and the challenges in implementing the Tier 2 approach from the 2019 EMEP/EEA Guidebook. However, the TERT notes that several Member States have succeeded in implementing a Tier 2 method by using national data for some of the variables combined with assumptions for other variables. The TERT will also flag the difficulties experienced by many countries in implementing the current Tier 2 methodology of the 2019 EMEP/EEA Guidebook to the Task Force on Emission Inventories and Projections (TFEIP) to highlight the benefit of refining the methodological guidance for this source category. In response to a question raised during the review, Greece explained that it does not consider that the Tier 2 method is applicable for Greece due to the variety of minerals produced. However, Greece has evaluated the Tier 2 methodology and concluded that the required data is inaccessible due to the diversity and quantity of quarries and mines and the broad variety of minerals. Greece also noted that this is a key category for PM ₁₀ emissions only and is one of the less significant key categories for PM ₁₀ and that the impact is considered below the threshold of significance. This finding could be related to an over or under-estimate of emissions with an impact on total emissions that is above the threshold of significance. Greece has not provided a revised estimate which has been accepted by the TERT. It is currently not possible for the TERT to provide a	Please refer to section 4.2.5.	Section 4.2.5

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
	numerical emission estimate with an adequate level of certainty as the TERT has no activity data available. Therefore, this has been flagged as an unquantified potential technical correction, and will be assessed as a high priority item in future reviews. The TERT strongly recommends that Greece develop a higher tier method for PM ₁₀ (and PM _{2.5} and TSP) emissions from category 2A5a Quarrying and mining of minerals other than coal for inclusion in the 2024 submission.		
GR-2D3d-2023-0001	For category 2D3d Coating applications, for pollutant NMVOC and years 2005-2021, the TERT notes that there is a lack of transparency regarding the calculations made for estimating NMVOCs emissions from this activity. There is a lack of information on the consideration of reduction techniques implemented under the Industrial emission Directive (2010/75/EC) and the limitation of emissions of volatile organic compounds under directive 2004/42/EC, in the use of organic solvents in certain paints and varnishes and vehicle refinishing products (IIR page 100) on emissions. Greece explained that similar questions had been raised in previous reviews and had been considered resolved. This does not relate to an over- or under-estimate of emissions. The TERT recommends that Greece include as much information as possible on activity data and methods used to calculate emissions and describe how the implementation of the two Directives are considered, in	Implemented	Section 4.5.4
GR-2D3e-2023-0001	the next IIR submission, which could avoid the repetition of questions from reviewers. For category 2D3e Degreasing, pollutant NMVOC and years 2005-2021, the TERT notes that there is a lack of transparency regarding methods used for calculation NMVOC emissions from this sector. This does not relate to an over- or under-estimate of emissions. In response to a question raised during the review, Greece provided further information and a scientific paper developed in 2009. This paper is confidential. However, the TERT recommends that Greece includes further information on the methods used as well as explanation of emission trends in its 2024 IIR submission. An example is the important increase of emissions in 2020 and 2021 (IIR submission 2023 page 103) following a decrease in emissions. The TERT recommends that Greece include this information in the 2024 IIR submission both for activity data and for emissions.	Implemented	Section 4.5.5
GR-2D3f-2023-0001	For 2D3f Dry cleaning, pollutant NMVOC and years 2005-2021, the TERT notes that there is a lack of transparency regarding reduction measures in the calculation of NMVOC emissions from this sector. In response to a question raised during the review, Greece confirmed that no implementation of reduction measures are considered in this activity. The TERT recommends that Greece include this information in the 2024 IIR submission.	Implemented	Section 4.5.6
GR-2D3h-2023-0001	For category 2D3h, pollutant NMVOC and years 2005-2021, the TERT notes that there is a lack of transparency regarding the calculations made for estimating NMVOCs emissions from this activity and the	Implemented	Section 4.5.8

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
	consideration of reduction techniques implemented under the Industrial emission Directive (2010/75/EC). Greece explained that similar questions were raised during the review in 2019 and 2022 but they were considered resolved. This does not relate to an over- or under-estimate of emissions.		
	The TERT recommends that Greece include as much information as possible on activity data and methods used to calculate emissions and describe how exactly the implementation of the IED directives are considered in the 2024 submission of its IIR, this could avoid repetition of questions from reviewers.		
GR-3-2023-0001	For categories 3B Manure Management and 3D Agricultural Soils, pollutants NH ₃ and NO _X and for all years 1990-2021 the TERT noted throughout Chapter 5 of the IIR that there may be an over-/under-estimate of emissions. This over-/under-estimate may be due to use of two different versions of the EMEP/EEA Guidebook (2016 and 2019) to estimate emissions. Throughout Chapter 5 of the IIR, the 2016 version and the 2019 version are separately referenced for different subcategories of 3B (sections 5.3 and 5.4 of the IIR) and in some cases both referenced within a subcategory (e.g. section 5.3.6 of the IIR). The TERT further noted that there are differences in the emission factors presented in Table 3.9 Chapter 3B of both versions of the EMEP/EEA Guidebook for most livestock species and most animal waste management systems and that it is best practice to use the most up-to-date version of the EMEP/EEA Guidebook and to not use different versions interchangeably. In response to a question raised during the review, Greece provided a revised estimate for categories 3B and 3D for years 2005, 2019, 2020 and 2021. The TERT agreed with the revised estimate provided by Greece. The TERT recommends that Greece include the revised estimate in the 2024 submission.	Revised estimations based on EMEP/EEA Guidebook 2019 are provided.	Section 5.3 and 5.4
GR-3B4h-2023-0001	For category 3B4h Manure management - Other animals (rabbits), pollutant NH ₃ and years 1990-2021, the NH ₃ TERT notes that the notation key 'NA' (Not Applicable) is used. In response to a question raised during the review Greece highlighted that no Tier 1 emission factor for NH ₃ exists in the 2019 EMEP/EEA Guidebook whereas one does exist for NMVOC for example. The TERT notes that the issue is below the threshold of significance and that the emission factor is not provided in the 2019 EMEP/EEA Guidebook. However, NH ₃ emissions from rabbits are included in the inventories of a number of neighbouring countries and thus emission factors are available that may be used by Greece to estimate emissions from this category. The TERT recommends that Greece investigate applicable emission factors for rabbits used in the inventories of neighbouring countries and include the missing estimates in the 2024 submission.	NH3 emissions for rabbits are provided	Section 5.3.9
GR-3Da1-2023-0002	For category 3Da1 Inorganic N-fertilizers (includes also urea application), for pollutant NH ₃ and for the years 2012-2021, the TERT notes that on page 133 of the IIR that there is a lack of transparency regarding the use of urease inhibited nitrogen fertilizers. Greece states on page 133 of the IIR that urease inhibited fertilisers have been in use since 2012 and that in 2021 approximately 45% of total urea consumption was through inhibited urea fertiliser. Furthermore it is stated that the use of such fertilisers products reduces emissions by 80%. An emission reduction coefficient of 80% is higher than that suggested for broadcast	Implemented	Section 5.4.3

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
	spread inhibited urea (70% reduction) as presented in the 2014 UNECE Ammonia Abatement Guidance document (https://www.clrtap-tfrn.org/content/options-ammonia-abatement-guidance-unece-task-force-reactive-nitrogen). In response to a question raised during the review Greece explained that the 80% reduction factor is based on national studies undertaken by the main fertiliser suppliers to the market in Greece and that the 45% proportion of urea containing urease inhibitor (e.g. NBPT, NPPT) is estimated based on reported data to the Hellenic Fertiliser Association.		
	The TERT recommends that Greece provide references to scientific studies undertaken in Greece on the efficacy of urease inhibitors, and include the exact proportion of urease inhibited products on a yearly basis and estimate emissions using these proportions or use the abatement factor of 70% outlined in the 2014 UNECE Ammonia Abatement Guidance document in the 2024 and future submissions.		
GR-3Da2a-2023-0002	For category 3Da2a Animal manure applied to soils, pollutant NMVOC and for all years TERT notes that Greece reports the notation key 'NA', and that no explanation is provided in the IIR. The TERT notes that Greece uses a Tier 1 method to estimate emissions of NMVOC from category 3B and that no Tier 1 emission factor is presented for category 3Da2a in the 2019 EMEP/EEA Guidebook. Furthermore, the TERT noted that Greece utilises the Tier 2 methodology to estimate emissions of NH ₃ from livestock in category 3B and should thus be able to estimate emissions of NMVOC from category 3Da2a using the Tier 2 approach described in Chapter 3B of the 2019 EMEP/EEA Guidebook. It is also encouraged on page 18 of the 2019 EMEP/EEA Guidebook that countries calculate emissions of NMVOC using the Tier 2 approach if possible. In response to a question raised during the review Greece stated that it will investigate the possibility of using Tier 2 approach for NMVOC emissions in the next submission for all livestock species. In case no data are available, default parameters in the 2019 EMEP/EEA Guidebook will be investigated to be considered. The TERT notes that the issue is below the threshold of significance for a technical correction. The TERT recommends that Greece investigate the possibility of using a Tier 2 approach for NMVOC emissions in the next submission for all livestock species, and if no data is available, consider the use of default parameters.	Tier 2 approach is utilized	Section 5.4.4
GR-3Da3-2023-0001	For category 3Da3 Urine and dung deposited by grazing animals, pollutant NMVOC and all years, the TERT notes that Greece reports the notation key 'NA', and that no explanation is provided in the IIR. The TERT notes that Greece uses a Tier 1 method to estimate emissions of NMVOC from category 3B and that no Tier 1 emission factor is presented for category 3Da3 in the 2019 EMEP/EEA Guidebook. The TERT also notes that countries are encouraged on page 18 of the Guidebook to calculate emissions of NMVOC using the Tier 2 approach, if possible. In response to a question raised during the review, Greece explained that it will investigate the possibility of using the Tier 2 approach for both NH ₃ and NMVOC emissions in 3B, and thus provide the necessary data for category 3Da3 in the next submission for all livestock species.	Tier 2 approach is utilized	Section 5.4.5

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
	The TERT recommends that Greece make every effort to develop Tier 2 estimates for both NH ₃ and NMVOC for categories 3B and 3D in the 2024 submission.		
GR-3De-2023-0001	For category 3De Cultivated crops, pollutant NMVOC and all years, with reference to page 136 of the IIR, the TERT notes that a Tier 1 method is used by Greece for a key category. The TERT notes that using a Tier 1 method is not best practice, and could result in an over-estimate of emissions. In response to a question raised during the review Greece provided revised estimates using the Tier 2 approach provided in Chapter 3D of the 2019 EMEP/EEA Emission Guidebook. The TERT does not agree with the revised estimate provided by Greece because the emission factors used were those in the last column (far right) in Table 3.3, when the correct emission factors to use are those presented in the sixth column (third from the right). The TERT acknowledges that the guidance provided is not explicitly clear in this regard. The TERT notes that the issue is below the threshold of significance for a technical correction.	Tier 2 approach is utilized	Section 5.4.10
	The TERT recommends that Greece in its next annual submission estimate emissions of NMVOC from 3De Cultivated crops using the Tier 2 approach presented in the 2019 EMEP/EEA Emission Guidebook and the emission factors presented in the sixth column of Table 3.3.		
GR-5D-2022-0001	For category 5D Wastewater handling, pollutant NMVOC and years 1990-2021, the TERT notes that there is a lack of transparency in the explanation of the method used and more specifically in the activity data used, as this seems to be wastewater production instead of treated wastewater. The issue does not relate to an overor under-estimate of emissions. This was raised during the 2022 NECD inventory review. The TERT notes that the issue relates to a small source, that is not a key category, calculated using a Tier 1 methodology. In response to a question raised during the review, Greece did not answer the specific questions from the TERT relating to (1) the changing share of people connected to the sewer system (relevant also for the question on the use of latrines), (2) why the activity data for 2021 does not reflect the sum of the population (even not after correction for the share of population connected to the sewer system), (3) whether also rainwater (street and roof runoff) is cached by the sewer system and if this is also part of the estimate that as reported based on literature search and expert judgement. Greece stated that "Due to the insignificance of this category, there are no plans to improve the estimation in future submissions, as resources and effort are prioritized over other sources of emissions." The TERT notes that the statement in the IIR that "A minor number of latrines exist in remote areas of Greece" is an insufficient justification for not calculating emissions from this source.	NMVOC from 5D1 are less than 0.009kt in 2022. After careful consideration and review of our resource allocation priorities, it has been decided that enhancements to the estimation methods for this particular category will not be pursued in future submissions. This decision is based on a strategic assessment that prioritizes the	
	The TERT reiterates the recommendation from the 2022 review that Greece improve methodological descriptions (e.g. 1 paragraph per an NFR category) and provide activity data, when it is not presented in the NFR table, and include a proper justification for not reporting emissions from latrines to the submission of the next IIR (see also the observation GR-5D1-2022-0001).	prioritizes the optimization of resources and efforts towards areas with more significant impacts on our	

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
		emissions profile. We appreciate your understanding and remain committed to continuous improvement across our key areas of focus.	
GR-5D1-2022-0001	For category 5D1 Domestic wastewater handling, for pollutant NH ₃ and years 1990-2021, the TERT notes that there is a lack of transparency regarding the emissions coming from latrines and that the IIR still only states that a minor number of latrines exists in remote areas of Greece as justification for reporting the notation key 'NE'. The issue was raised in the 2022 NECD review. The TERT noted that from the 2022 Greek NIR it is clear that in 1990 approximately 89% of the population was not connected to a sewer system with aerobic wastewater treatment and that this percentage gradually declined to 13% in 2005 and 9% from 2011 onwards. The TERT notes that the 2023 Reporting Guidelines gives a clear explanation for the use of 'NE' and that the statement that "A minor number of latrines exist in remote areas of Greece" is an insufficient justification for not calculating emissions from this source. The TERT reiterates the recommendation from the 2022 review that Greece include a justification on the reason for reporting NH ₃ emissions from latrines as 'NE', e.g. by providing an estimate of the magnitude of	"NE" was used because Greece applies the Tier 1 approach to estimate emissions associated with 5D1 category. There is no EF for NH3 emissions under Tier 1 approach.	
GR-5E-2023-0001	the emissions over the complete time series, in the 2024 submission. For category 5E Other waste (car fires), pollutants PM ₁₀ , PM _{2.5} and PCDD/F and years 1990-2021, the TERT notes that there is a lack of time series consistency. For the period 2013-2021, a very low number of car fires are reported; 0.003% of the total passenger car fleet, while the average ratio other countries is 0.050% (ranging from 0.024% to 0.097%). Additionally, no emissions are reported from fire events over the period 1990-1999 (the notation key 'NE' is used) and the same activity data (803 events every year) is reported for the period 2000-2013. In response to a question raised during the review, Greece noted that this relates to a small source and that no data is available before 2013 and that the data used is the official data from the Fire Service of Greece and of adequate quality to be used in the inventory. The TERT notes that the issue is below the threshold of significance for a technical correction but adds that for other pollutants (outside the scope of this review) the threshold could be exceeded as demonstrated for PCDD/F in the attached file to this conclusion. The TERT notes that the 2019 EMEP/EEA Guidebook gives directions for "gap-filling" and extrapolation for situations where in years where no activity data is available. Additionally, the TERT notes that it is good practice that all activity data is validated for quality.	Activity data (i.e. annual fire events, type of fire) were obtained from fire service of Greece.	Section 6.6
	The TERT recommends that Greece evaluate if the activity data for car fires is complete and explains in the IIR why the numbers are significantly lower than in neighbouring countries, additionally, "gap-filling" or		

EMRT-NECD Observation	Recommendation	Improvement made/planned	Reference (Sections) into IIR
	extrapolation to create a full time series for 1990-2021 should be considered for the 2024 submission.		

REFERENCES

EEA – European Environment Agency (2019): EMEP/EEA air pollutant emission inventory guidebook – 2019. EEA Technical report No. 13/2019.

http://www.eea.europa.eu/publications/emep-eea-guidebook-2019

EEA – European Environment Agency (2016): EMEP/EEA air pollutant emission inventory guidebook – 2016. EEA Technical report No. 21/2016.

http://www.eea.europa.eu/publications/emep-eea-guidebook-2016

ELSTAT – Hellenic Statistical Authority, PRODCOM database

http://www.statistics.gr/el/home

EPA – U.S. Environmental Protection Agency (1999): AP-42. Compilation of Air Pollutant Emission Factors, 5th edition. Chapter 13.2 fugitive dust sources. U.S. Environmental Protection Agency, Research Triangle Park, NC.

http://www.epa.gov/otaq/ap42.htm

EUROSTAT, PRODOM database, livestock population database

http://ec.europa.eu/eurostat/web/prodcom/data/database

FAOSTAT, Statistics Division, Food and Agriculture Organization of the United Nations.

http://www.fao.org/faostat/en/#home

MEEN – Ministry of Environment and Energy (2018): Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. National Inventory Report for the Greek Greenhouse Gas Inventory 1990-2016.

http://ypeka.gr/Default.aspx?tabid=470&language=el-GR

MEEN – Ministry of Environment and Energy (2019): Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol. National Inventory Report for the Greek Greenhouse Gas Inventory 1990-2017.

http://ypeka.gr/Default.aspx?tabid=470&language=el-GR

MEEN – Ministry of Environment and Energy (2019): SUBMISSION OF THE INFORMATION UNDER THE ARTICLES 12, 13 AND 14 OF THE MONITORING MECHANISM REGULATION (EU) 525/2013.

https://cdr.eionet.europa.eu/gr/eu/mmr/art04-13-14 lcds pams projections/projections/envwteyjw/

ANNEXES

Annex I: Key categories

Table I-0-1 KCA level assessment for NOx (with key categories in bold)

NFR Code	Longname	Latest year, kt	Level assessment Lx,t	Cumulative total
1A1a	Public electricity and heat production	56.24	24%	24%
1A3biii	Road transport: Heavy duty vehicles and buses	45.18	19%	44%
1A3dii	National navigation (shipping)	39.03	17%	60%
1A3bii	Road transport: Light duty vehicles	13.09	6%	66%
1A3bi	Road transport: Passenger cars	10.45	4%	70%
3Da3	Urine and dung deposited by grazing animals	7.62	3%	74%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	7.42	3%	77%
3Da1	Inorganic N-fertilizers (includes also urea application)	6.70	3%	80%
5C2	Open burning of waste	5.98	3%	82%
1A4bi	Residential: Stationary	5.55	2%	85%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	5.35	2%	87%
1A1b	Petroleum refining	4.69	2%	89%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	4.37	2%	91%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	3.94	2%	93%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	2.21	1%	93%
3Da2a	Animal manure applied to soils	2.10	1%	94%
1A4ai	Commercial/institutional: Stationary	1.96	1%	95%
1A3ai(i)	International aviation LTO (civil)	1.79	1%	96%
1A5b	Other, Mobile (including military, land based and recreational boats)	1.50	1%	97%
1A3biv	Road transport: Mopeds & motorcycles	1.25	1%	97%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	0.85	0%	98%
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	0.80	0%	98%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.79	0%	98%
3B4gii	Manure mangement - Broilers	0.72	0%	99%
3F	Field burning of agricultural residues	0.62	0%	99%
1A3aii(i)	Domestic aviation LTO (civil) Stationary combustion in manufacturing	0.52	0%	99%
1A2a	industries and construction: Iron and steel	0.51	0%	99%

1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper			
IAZU	and Print	0.32	0%	99%
1A3c	Railways	0.27	0%	99%
2C1	Iron and steel production	0.20	0%	100%
2C3	Aluminium production	0.19	0%	100%
2B1	Ammonia production	0.16	0%	100%
3B4gi	Manure mangement - Laying hens	0.14	0%	100%
3B2	Manure management - Sheep	0.11	0%	100%
3B1b	Manure management - Non-dairy cattle	0.11	0%	100%
2B2	Nitric acid production	0.10	0%	100%
3B1a	Manure management - Dairy cattle	0.05	0%	100%
2G	Other product use (please specify in the IIR)	0.05	0%	100%
3B4d	Manure management - Goats	0.04	0%	100%
2C2	Ferroalloys production	0.03	0%	100%
3Da2b	Sewage sludge applied to soils	0.02	0%	100%
3B4giii	Manure mangement - Turkeys	0.02	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.01	0%	100%
5C1biii	Clinical waste incineration	0.01	0%	100%
3B3	Manure management - Swine	0.01	0%	100%
1A3ei	Pipeline transport	0.01	0%	100%
3B4giv	Manure management - Other poultry	0.00	0%	100%
5C1bv	Cremation	0.00	0%	100%
3B4e	Manure management - Horses	0.00	0%	100%
3B4f	Manure management - Mules and asses	0.00	0%	100%
3B4a	Manure management - Buffalo	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0%	100%

Table I-0-2 KCA trend assessment for NOx (with key categories in bold)

NFR Code	Longname	1990, kt	Latest year, kt	Trend assessment Tx,t	% Contribution to trend	Cumulative total
1A3bi	Road transport: Passenger cars	55.20	10.45	0.17	19%	19%
1A3biii	Road transport: Heavy duty vehicles and buses	75.58	45.18	0.15	17%	36%
1A1a	Public electricity and heat production	69.69	56.24	0.11	12%	48%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	28.30	4.37	0.09	10%	57%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	26.48	7.42	0.07	8%	66%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	17.87	5.35	0.05	5%	71%
1A3bii	Road transport: Light duty vehicles	22.59	13.09	0.05	5%	76%

1A3dii	National navigation (shipping)	40.64	39.03	0.05	5%	82%
3Da1	Inorganic N-fertilizers (includes also urea application)	16.96	6.70	0.04	5%	87%
1A2c	Stationary combustion in manufacturing industries and	4.04	0.00	0.04	20/	000/
3Da3	construction: Chemicals Urine and dung deposited by grazing animals	4.81 8.67	0.80 7.62	0.01	2% 1%	88% 89%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous					
1A2e	metals Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	5.79	0.85 3.94	0.01	1% 1%	91%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	2.98	0.51	0.01	1%	93%
1A3c	Railways	2.51	0.27	0.01	1%	94%
5C2	Open burning of waste	5.28	5.98	0.01	1%	95%
1A1b	Petroleum refining	3.12	4.69	0.01	1%	95%
1A4bi	Residential: Stationary	4.77	5.55	0.01	1%	96%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and					
00.0	Print	2.01	0.32	0.01	1%	97%
3Da2a 1A2gvii	Animal manure applied to soils Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	1.40	2.10	0.00	1% 0%	97%
1A3ai(i)	International aviation LTO (civil)	0.97	1.79	0.00	0%	98%
2B2	Nitric acid production	0.83	0.10	0.00	0%	98%
1A4ai	Commercial/institutional: Stationary	2.10	1.96	0.00	0%	99%
3F	Field burning of agricultural residues	1.06	0.62	0.00	0%	99%
1A3biv	Road transport: Mopeds & motorcycles	0.63	1.25	0.00	0%	99%
3B4gii	Manure mangement - Broilers	0.55	0.72	0.00	0%	99%
2C2 1A4ci	Ferroalloys production Agriculture/Forestry/Fishing:	0.30	0.03	0.00	0%	99%
	Stationary	0.73	0.79	0.00	0%	100%
2B1	Ammonia production	0.31	0.16	0.00	0%	100%
1A3aii(i) 2G	Other product use (please	0.42	0.52	0.00	0%	100%
1A1c	specify in the IIR) Manufacture of solid fuels and other energy industries	0.20	0.05	0.00	0% 0%	100% 100%
3B1a	Manure management - Dairy cattle	0.12	0.05	0.00	0%	100%
2C1	Iron and steel production	0.13	0.20	0.00	0%	100%
2C3	Aluminium production	0.15	0.19	0.00	0%	100%
3B4gi	Manure mangement - Laying hens	0.10	0.19	0.00	0%	100%
3B4f	Manure management - Mules and asses	0.05	0.00	0.00	0%	100%

3B2	Manure management - Sheep	0.10	0.11	0.00	0%	100%
3B1b	Manure management - Non- dairy cattle	0.11	0.11	0.00	0%	100%
3B4d	Manure management - Goats	0.06	0.04	0.00	0%	100%
3B4e	Manure management - Horses	0.01	0.00	0.00	0%	100%
3B3	Manure management - Swine	0.01	0.01	0.00	0%	100%
3Da2b	Sewage sludge applied to soils	0.02	0.02	0.00	0%	100%
3B4giii	Manure mangement - Turkeys	0.01	0.02	0.00	0%	100%
5C1biii	Clinical waste incineration	0.00	0.01	0.00	0%	100%
3B4giv	Manure management - Other poultry	0.00	0.00	0.00	0%	100%
3B4a	Manure management - Buffalo	0.00	0.00	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0.00	0.00	0%	100%

Table I-0-3 KCA level assessment for NMVOC (with key categories in bold)

NFR Code	Longname	Latest year, kt	Level assessment Lx,t	Cumulative total
2D3a	Domestic solvent use including fungicides	20.10	15%	15%
2D3d	Coating applications	15.36	11%	26%
1A4bi	Residential: Stationary	13.04	9%	35%
1A3bi	Road transport: Passenger cars	11.37	8%	43%
1A3bv	Road transport: Gasoline evaporation	9.68	7%	50%
1A3bii	Road transport: Light duty vehicles	6.27	5%	55%
2D3g	Chemical products	6.09	4%	59%
1A3biv	Road transport: Mopeds & motorcycles	5.55	4%	63%
1A1b	Petroleum refining	3.90	3%	66%
3Da2a	Animal manure applied to soils	3.53	3%	69%
2H2	Food and beverages industry	3.45	3%	71%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	2.96	2%	73%
2D3h	Printing	2.88	2%	75%
3B1a	Manure management - Dairy cattle	2.59	2%	77%
1B2av	Distribution of oil products	2.36	2%	79%
1A3biii	Road transport: Heavy duty vehicles and buses	2.33	2%	81%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	2.26	2%	82%
3De	Cultivated crops	2.25	2%	84%
2D3i	Other solvent use (please specify in the IIR)	2.10	2%	86%
3B1b	Manure management - Non-dairy cattle	2.03	1%	87%
5A	Biological treatment of waste - Solid waste disposal on land	1.91	1%	88%
2D3e	Degreasing	1.89	1%	90%
3B4gii	Manure mangement - Broilers	1.79	1%	91%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	1.32	1%	92%
1A1a	Public electricity and heat production	1.27	1%	93%

1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic			
	minerals	1.23	1%	94%
5C2	Open burning of waste	1.20	1%	95%
1A3dii	National navigation (shipping)	1.17	1%	96%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	1.10	1%	96%
3B4d	Manure management - Goats	0.64	0%	97%
2G	Other product use (please specify in the IIR)	0.63	0%	97%
3B4gi	Manure mangement - Laying hens	0.47	0%	98%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.39	0%	98%
1A5b	Other, Mobile (including military, land based and recreational boats)	0.38	0%	98%
3B2	Manure management - Sheep	0.33	0%	98%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.30	0%	99%
3B3	Manure management - Swine	0.24	0%	99%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	0.23	0%	99%
1A4ai	Commercial/institutional: Stationary	0.20	0%	99%
2D3f	Dry cleaning	0.17	0%	99%
3F	Field burning of agricultural residues	0.17	0%	99%
3B4giii	Manure mangement - Turkeys	0.12	0%	99%
1A3ai(i)	International aviation LTO (civil)	0.12	0%	99%
3Da3	Urine and dung deposited by grazing animals	0.11	0%	100%
3B4a	Manure management - Buffalo	0.10	0%	100%
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	0.08	0%	100%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	0.07	0%	100%
2C1	Iron and steel production	0.07	0%	100%
3B4h	Manure management - Other animals (please specify in IIR)	0.07	0%	100%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	0.05	0%	100%
2D3c	Asphalt roofing	0.04	0%	100%
1A3c	Railways	0.03	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.02	0%	100%
2D3b	Road paving with asphalt	0.01	0%	100%
2B1	Ammonia production	0.01	0%	100%
3B4giv	Manure management - Other poultry	0.01	0%	100%
5D1	Domestic wastewater handling	0.01	0%	100%
1B2ai	Fugitive emissions oil: Exploration, production, transport	0.01	0%	100%
5C1bi	Industrial waste incineration	0.00	0%	100%
1A3ei	Pipeline transport	0.00	0%	100%
5C1biii	Clinical waste incineration	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0%	100%

1B2b	Fugitive emissions from natural gas (exploration, production, processing,			
	transmission, storage, distribution and other)	0.00	0%	100%
5C1bv	Cremation	0.00	0%	100%

Table I-0-4 KCA trend assessment for NMVOC (with key categories in bold)

NFR Code	Longname	1990, kt	Latest year, kt	Trend assessment Tx,t	% Contribution to trend	Cumulative total
1A3bi	Road transport: Passenger cars	87.16	11.37	0.08	30%	30%
2D3a	Domestic solvent use including fungicides	22.79	20.10	0.03	12%	41%
2D3d	Coating applications	20.07	15.36	0.02	8%	49%
1A3bii	Road transport: Light duty vehicles	29.42	6.27	0.02	7%	56%
1A4bi	Residential: Stationary	18.06	13.04	0.02	6%	62%
1A3bv	Road transport: Gasoline evaporation	32.85	9.68	0.01	5%	67%
2D3g	Chemical products	5.49	6.09	0.01	4%	71%
2D3i	Other solvent use (please specify in the IIR)	9.79	2.10	0.01	2%	73%
2D3h	Printing	1.80	2.88	0.01	2%	76%
3Da2a	Animal manure applied to soils	3.78	3.53	0.01	2%	78%
5A	Biological treatment of waste - Solid waste disposal	0.06	1.91	0.01	2%	
	on land Fugitive emission from solid	0.06	1.91	0.01	270	80%
1B1a	fuels: Coal mining and handling	10.77	2.96	0.01	2%	82%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	9.04	2.26	0.01	2%	84%
2H2	Food and beverages industry	4.79	3.45	0.00	2%	85%
1A1b	Petroleum refining	5.88	3.90	0.00	2%	87%
3B1b	Manure management - Non- dairy cattle	1.80	2.03	0.00	1%	88%
3B4gii	Manure mangement - Broilers	1.36	1.79	0.00	1%	90%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	0.33	1.32	0.00	1%	91%
3De	Cultivated crops	2.77	2.25	0.00	1%	92%
1A3dii	National navigation (shipping)	0.98	1.17	0.00	1%	93%
1A3biii	Road transport: Heavy duty vehicles and buses	7.12	2.33	0.00	1%	94%
5C2	Open burning of waste	1.06	1.20	0.00	1%	95%
1A1a	Public electricity and heat production	1.40	1.27	0.00	1%	95%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.04	0.39	0.00	0%	96%
1A3biv	Road transport: Mopeds & motorcycles	13.60	5.55	0.00	0%	96%
3B4gi	Manure mangement - Laying hens	0.36	0.47	0.00	0%	96%

440	Stationary combustion in manufacturing industries and					
1A2gviii	construction: Other (please specify in the IIR)	3.23	1.10	0.00	0%	97%
3B4d	Manure management - Goats	0.91	0.64	0.00	0%	97%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.91	0.30	0.00	0%	97%
1B2av	Distribution of oil products	4.90	2.36	0.00	0%	98%
2G	Other product use (please					
000	specify in the IIR)	0.93	0.63	0.00	0%	98%
3B2 1A2f	Manure management - Sheep Stationary combustion in manufacturing industries and construction: Non-metallic	0.32	0.33	0.00	0%	98%
0001	minerals	3.22	1.23	0.00	0%	98%
2D3f 1A2b	Dry cleaning Stationary combustion in manufacturing industries and construction: Non-ferrous	0.77	0.17	0.00	0%	98%
	metals Commercial/institutional:	0.19	0.23	0.00	070	9970
1A4ai	Stationary	0.12	0.20	0.00	0%	99%
3B1a	Manure management - Dairy cattle	5.70	2.59	0.00	0%	99%
2D3e	Degreasing	4.10	1.89	0.00	0%	99%
1A3ai(i)	International aviation LTO (civil)	0.01	0.11	0.00	0%	99%
3B4a	Manure management - Buffalo	0.01	0.10	0.00	0%	99%
1A3c	Railways	0.30	0.03	0.00	0%	99%
3B4giii	Manure mangement - Turkeys	0.09	0.12	0.00	0%	99%
3B3	Manure management - Swine	0.38	0.24	0.00	0%	100%
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	0.37	0.08	0.00	0%	100%
1B2ai	Fugitive emissions oil: Exploration, production, transport	0.15	0.01	0.00	0%	100%
3Da3	Urine and dung deposited by	0.11	0.11	0.00	0%	100%
2C1	grazing animals Iron and steel production	0.11	0.11	0.00	0%	100%
3F	Field burning of agricultural	0.03	0.07	0.00	0%	100%
2D3c	residues Asphalt roofing	0.23	0.13	0.00	0%	100%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	0.10	0.07	0.00	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.00	0.02	0.00	0%	100%
3B4h	Manure management - Other					
1A2a	animals (please specify in IIR) Stationary combustion in manufacturing industries and	0.18	0.07	0.00	0%	100%
3D3P	construction: Iron and steel	0.15	0.05	0.00	0%	100%
2D3b 3B4giv	Road paving with asphalt Manure management - Other	0.01	0.01	0.00	0%	100%
	poultry Demostic westerness handling	0.01	0.01	0.00	0%	100%
5D1	Domestic wastewater handling	0.01	0.01	0.00	0%	100%

1B2b	Fugitive emissions from natural gas (exploration, production, processing, transmission, storage, distribution and other)	0.01	0.00	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0.00	0.00	0%	100%
5C1biii	Clinical waste incineration	0.00	0.00	0.00	0%	100%
2B1	Ammonia production	0.03	0.01	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0.00	0.00	0%	100%

Table I-0-5 KCA level assessment for SOx (with key categories in bold)

NFR Code	Longname	Latest year, kt	Level assessment Lx,t	Cumulative total
1A1a	Public electricity and heat production	19.23	44%	44%
1A1b	Petroleum refining	8.54	19%	63%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	4.50	10%	74%
1A3dii	National navigation (shipping)	3.89	9%	83%
1A4bi	Residential: Stationary	2.99	7%	89%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	1.20	3%	92%
2C3	Aluminium production	0.84	2%	94%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	0.70	2%	96%
1A4ai	Commercial/institutional: Stationary	0.24	1%	96%
5C2	Open burning of waste	0.23	1%	97%
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	0.19	0%	97%
2B10a	Chemical industry: Other (please specify in the IIR)	0.16	0%	97%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.16	0%	98%
3F	Field burning of agricultural residues	0.13	0%	98%
2C5	Lead production	0.13	0%	98%
2C2	Ferroalloys production	0.12	0%	99%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	0.11	0%	99%
1A3ai(i)	International aviation LTO (civil)	0.10	0%	99%
2C1	Iron and steel production	0.09	0%	99%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	0.09	0%	100%
1A3bi	Road transport: Passenger cars	0.04	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.03	0%	100%
1A3biii	Road transport: Heavy duty vehicles and buses	0.03	0%	100%
1A5b	Other, Mobile (including military, land based and recreational boats)	0.02	0%	100%
1A3bii	Road transport: Light duty vehicles	0.02	0%	100%

1A3c	Railways	0.01	0%	100%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	0.01	0%	100%
1A3biv	Road transport: Mopeds & motorcycles	0.00	0%	100%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	0.00	0%	100%
2G	Other product use (please specify in the IIR)	0.00	0%	100%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.00	0%	100%
5C1biii	Clinical waste incineration	0.00	0%	100%
5C1bv	Cremation	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0%	100%

Table I-0-6 KCA trend assessment for SOx (with key categories in bold)

NFR Code	Longname	1990, kt	Latest year, kt	Trend assessment Tx,t	% Contribution to trend	Cumulative total
1A1a	Public electricity and heat production	314.08	19.23	0.01	28%	28%
1A1b	Petroleum refining	19.51	8.54	0.01	25%	52%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	34.45	0.70	0.00	8%	60%
1A4bi	Residential: Stationary	9.70	2.99	0.00	8%	68%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	34.67	4.50	0.00	6%	74%
1A3dii	National navigation (shipping)	28.05	3.89	0.00	5%	79%
1A3biii	Road transport: Heavy duty vehicles and buses	12.53	0.03	0.00	4%	83%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous metals	9.57	0.01	0.00	3%	86%
2C3	Aluminium production	0.68	0.84	0.00	3%	88%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	7.31	0.09	0.00	2%	90%
1A2c	Stationary combustion in manufacturing industries and construction: Chemicals	8.07	0.19	0.00	2%	92%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	4.91	0.00	0.00	2%	94%
1A3bi	Road transport: Passenger cars	4.65	0.04	0.00	1%	95%

1A2d	Stationary combustion in manufacturing industries					
	and construction: Pulp, Paper and Print	4.46	0.11	0.00	1%	96%
5C2	Open burning of waste	0.20	0.23	0.00	1%	97%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	11.94	1.20	0.00	1%	97%
1A4ai	Commercial/institutional: Stationary	1.27	0.24	0.00	0%	98%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.44	0.16	0.00	0%	98%
3F	Field burning of agricultural residues	0.23	0.13	0.00	0%	99%
1A3bii	Road transport: Light duty vehicles	1.42	0.02	0.00	0%	99%
1A3ai(i)	International aviation LTO (civil)	0.06	0.10	0.00	0%	99%
2C1	Iron and steel production	0.06	0.09	0.00	0%	100%
2C2	Ferroalloys production	1.02	0.12	0.00	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.02	0.03	0.00	0%	100%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.26	0.00	0.00	0%	100%
2B10a	Chemical industry: Other (please specify in the IIR)	2.02	0.16	0.00	0%	100%
1A3biv	Road transport: Mopeds & motorcycles	0.14	0.00	0.00	0%	100%
1A3c	Railways	0.13	0.01	0.00	0%	100%
2G	Other product use (please specify in the IIR)	0.00	0.00	0.00	0%	100%
5C1biii	Clinical waste incineration	0.00	0.00	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0.00	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0.00	0.00	0%	100%

Table I-0-7 KCA level assessment for NH3 (with key categories in bold)

NFR Code	Longname	Latest year, kt	Level assessment Lx,t	Cumulative total
3Da2a	Animal manure applied to soils	13.38	21%	21%
3Da1	Inorganic N-fertilizers (includes also urea application)	11.16	17%	38%
3Da3	Urine and dung deposited by grazing animals	10.95	17%	55%
3B2	Manure management - Sheep	3.68	6%	61%
3B1b	Manure management - Non-dairy cattle	3.51	5%	66%
3B4gii	Manure mangement - Broilers	3.44	5%	72%
3B4gi	Manure mangement - Laying hens	3.07	5%	77%
3B3	Manure management - Swine	2.66	4%	81%
3B1a	Manure management - Dairy cattle	2.05	3%	84%

2B10a	Chemical industry: Other (please specify in the IIR)	1.84	3%	87%
3B4d	Manure management - Goats	1.82	3%	90%
3B4h	Manure management - Other animals (please specify in IIR)	1.60	2%	92%
1A4bi	Residential: Stationary	1.58	2%	95%
1A3bi	Road transport: Passenger cars	1.10	2%	96%
3F	Field burning of agricultural residues	0.64	1%	97%
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	0.50	1%	98%
3B4giii	Manure mangement - Turkeys	0.41	1%	99%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	0.13	0%	99%
1A3bii	Road transport: Light duty vehicles	0.12	0%	99%
2G	Other product use (please specify in the IIR)	0.10	0%	99%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	0.10	0%	99%
3B4giv	Manure management - Other poultry	0.08	0%	100%
3Da2b	Sewage sludge applied to soils	0.07	0%	100%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	0.07	0%	100%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.04	0%	100%
3B4a	Manure management - Buffalo	0.04	0%	100%
1A3biii	Road transport: Heavy duty vehicles and buses	0.04	0%	100%
1B2aiv	Fugitive emissions oil: Refining / storage	0.02	0%	100%
1A3biv	Road transport: Mopeds & motorcycles	0.01	0%	100%
5B1	Biological treatment of waste - Composting	0.01	0%	100%
2B1	Ammonia production	0.01	0%	100%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	0.00	0%	100%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	0.00	0%	100%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.00	0%	100%
1A3c	Railways	0.00	0%	100%

Table I-0-8 KCA trend assessment for NH3 (with key categories in bold)

NFR Code	Longname	1990, kt	Latest year, kt	Trend assessment Tx,t	% Contribution to trend	Cumulative total
3Da1	Inorganic N-fertilizers (includes also urea application)	29.60	11.16	0.09	36%	36%
3Da2a	Animal manure applied to soils	17.34	13.38	0.02	7%	43%
3B4gii	Manure mangement - Broilers	2.62	3.44	0.02	7%	50%

3B1a	Manure management - Dairy				-01	
	Cattle	5.40	2.05	0.02	6%	56%
3B1b	Manure management - Non- dairy cattle	2.96	3.51	0.02	6%	62%
3B4gi	Manure mangement - Laying hens	2.34	3.07	0.02	6%	68%
3B4h	Manure management - Other animals (please specify in IIR)	4.53	1.60	0.01	6%	74%
3B2	Manure management - Sheep	3.56	3.68	0.01	5%	79%
3Da3	Urine and dung deposited by grazing animals	14.50	10.95	0.01	5%	84%
1A3biii	Road transport: Heavy duty vehicles and buses	1.73	0.03	0.01	5%	89%
1A3bi	Road transport: Passenger cars	0.05	1.10	0.01	4%	93%
5B2	Biological treatment of waste - Anaerobic digestion at biogas facilities	0.00	0.50	0.01	2%	95%
3B4giii	Manure mangement - Turkeys	0.31	0.41	0.00	1%	96%
2G	Other product use (please specify in the IIR)	0.45	0.10	0.00	1%	97%
1A4bi	Residential: Stationary	2.12	1.58	0.00	1%	98%
1A3bii	Road transport: Light duty vehicles	0.01	0.12	0.00	0%	98%
3F	Field burning of agricultural residues	1.11	0.64	0.00	0%	99%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	0.30	0.10	0.00	0%	99%
3B4d	Manure management - Goats	2.60	1.82	0.00	0%	99%
3B3	Manure management - Swine	4.02	2.66	0.00	0%	99%
3B4giv	Manure management - Other poultry	0.06	0.08	0.00	0%	100%
3B4a	Manure management - Buffalo	0.00	0.04	0.00	0%	100%
3Da2b	Sewage sludge applied to soils	0.07	0.07	0.00	0%	100%
1B2aiv	Fugitive emissions oil: Refining / storage	0.02	0.02	0.00	0%	100%
1A3biv	Road transport: Mopeds & motorcycles	0.00	0.01	0.00	0%	100%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	0.01	0.00	0.00	0%	100%
2B1	Ammonia production	0.02	0.01	0.00	0%	100%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.00	0.00	0.00	0%	100%
1A3c	Railways	0.00	0.00	0.00	0%	100%

Table I-0-9 KCA level assessment for PM2.5 (with key categories in bold)

NFR Code	Longname	Latest year, kt	Level assessment Lx,t	Cumulative total
1A4bi	Residential: Stationary	16.56	46%	46%

5C2	Open burning of waste	5.52	15%	61%
1A3dii	National navigation (shipping)	2.03	6%	67%
3F	Field burning of agricultural residues	1.52	4%	71%
2A5b	Construction and demolition	1.33	4%	74%
1A3biii	Road transport: Heavy duty vehicles and buses	1.12	3%	78%
1A1a	Public electricity and heat production	1.09	3%	81%
1A3bvi	Road transport: Automobile tyre and brake wear	0.88	2%	83%
2G	Other product use (please specify in the IIR)	0.68	2%	85%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	0.64	2%	87%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please specify in the IIR)	0.56	2%	88%
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic minerals	0.53	1%	90%
2D3i	Other solvent use (please specify in the IIR)	0.45	1%	91%
1A3bvii	Road transport: Automobile road abrasion	0.39	1%	92%
1A3bii	Road transport: Light duty vehicles	0.38	1%	93%
	Agriculture/Forestry/Fishing: Off-road	0.50	170	3070
1A4cii	vehicles and other machinery	0.27	1%	94%
1A1b	Petroleum refining	0.24	1%	94%
1A4ci	Agriculture/Forestry/Fishing: Stationary	0.19	1%	95%
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	0.18	0%	95%
3B2	Manure management - Sheep	0.18	0%	96%
2A5a	Quarrying and mining of minerals other than coal	0.16	0%	96%
2C3	Aluminium production	0.11	0%	97%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.11	0%	97%
2B10a	Chemical industry: Other (please specify in the IIR)	0.11	0%	97%
2A1	Cement production	0.10	0%	98%
1B1a	Fugitive emission from solid fuels: Coal mining and handling	0.09	0%	98%
3B1b	Manure management - Non-dairy cattle	0.09	0%	98%
3B4d	Manure management - Goats	0.07	0%	98%
1A3biv	Road transport: Mopeds & motorcycles	0.07	0%	98%
1A3bi	Road transport: Passenger cars	0.06	0%	99%
5E	Other waste (please specify in IIR)	0.06	0%	99%
1A4ai	Commercial/institutional: Stationary	0.06	0%	99%
3B4gii	Manure mangement - Broilers	0.05	0%	99%
3B1a	Manure management - Dairy cattle	0.03	0%	99%
2C1	Iron and steel production	0.03	0%	99%
3B4gi	Manure mangement - Laying hens	0.03	0%	99%
2A3 1A2d	Glass production Stationary combustion in manufacturing industries and construction: Pulp, Paper and	0.03	0%	99%
	Print	0.03	0%	100%

1A2c	Stationary combustion in manufacturing			
	industries and construction: Chemicals	0.02	0%	100%
2D3c	Asphalt roofing	0.02	0%	100%
2C2	Ferroalloys production	0.02	0%	100%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	0.02	0%	100%
1A3ai(i)	International aviation LTO (civil)	0.02	0%	100%
3B4giii	Manure mangement - Turkeys	0.01	0%	100%
2A2	Lime production	0.01	0%	100%
1A3c	Railways	0.01	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.01	0%	100%
1A2b	Stationary combustion in manufacturing industries and construction: Non-ferrous	0.04	00/	1000/
	metals	0.01	0%	100%
5C1bv	Cremation	0.00	0%	100%
3B4giv	Manure management - Other poultry	0.00	0%	100%
3B3	Manure management - Swine	0.00	0%	100%
3B4a	Manure management - Buffalo	0.00	0%	100%
2D3b	Road paving with asphalt	0.00	0%	100%
3B4e	Manure management - Horses	0.00	0%	100%
3B4f	Manure management - Mules and asses	0.00	0%	100%
2C5	Lead production	0.00	0%	100%
5A	Biological treatment of waste - Solid waste disposal on land	0.00	0%	100%
1A3ei	Pipeline transport	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0%	100%

Table I-0-10 KCA trend assessment for PM2.5 (with key categories in bold)

NFR Code	Longname	1990, kt	Latest year, kt	Trend assessment Tx,t	% Contribution to trend	Cumulative total
1A1a	Public electricity and heat production	11.64	1.09	0.10	29%	29%
5C2	Open burning of waste	4.88	5.52	0.04	13%	42%
1A4bi	Residential: Stationary	23.46	16.56	0.04	12%	54%
1A3biii	Road transport: Heavy duty vehicles and buses	4.16	1.12	0.02	7%	61%
1A3dii	National navigation (shipping)	1.45	2.03	0.02	6%	67%
2G	Other product use (please specify in the IIR)	2.93	0.68	0.02	5%	72%
1A4cii	Agriculture/Forestry/Fishing: Off-road vehicles and other machinery	1.66	0.27	0.01	4%	76%
1A3bvi	Road transport: Automobile tyre and brake wear	0.57	0.88	0.01	3%	79%
1A3bi	Road transport: Passenger cars	0.97	0.06	0.01	3%	81%
1A2gviii	Stationary combustion in manufacturing industries and construction: Other (please	1.79	0.56	0.01	3%	84%

	specify in the IIR)					
1A2f	Stationary combustion in manufacturing industries and construction: Non-metallic					
	minerals	0.05	0.53	0.01	2%	86%
1A2e	Stationary combustion in manufacturing industries and construction: Food processing, beverages and tobacco	0.29	0.64	0.01	2%	88%
1A3bii	Road transport: Light duty vehicles	0.06	0.38	0.01	2%	90%
1A3bvii	Road transport: Automobile	0.24	0.20	0.00	10/	040/
2D3i	road abrasion Other solvent use (please specify in the IIR)	0.24	0.39	0.00	1% 1%	91% 92%
1A2c	Stationary combustion in manufacturing industries and	0.36	0.02	0.00	1%	93%
2C2	construction: Chemicals Ferroalloys production	0.33	0.02	0.00	1%	94%
	Agriculture/Forestry/Fishing:	0.33	0.02	0.00	1 70	34 70
1A4ci	Stationary	0.04	0.19	0.00	1%	95%
2B10a	Chemical industry: Other (please specify in the IIR)	0.00	0.11	0.00	1%	96%
1B1a	Fugitive emission from solid fuels: Coal mining and handling Stationary combustion in	0.33	0.09	0.00	1%	96%
1A2b	manufacturing industries and construction: Non-ferrous metals	0.15	0.01	0.00	0%	97%
3B2	Manure management - Sheep	0.17	0.18	0.00	0%	97%
2C3	Aluminium production	0.09	0.11	0.00	0%	97%
3F	Field burning of agricultural residues	2.63	1.52	0.00	0%	97%
1A2gvii	Mobile Combustion in manufacturing industries and construction: (please specify in the IIR)	0.09	0.11	0.00	0%	98%
1A2a	Stationary combustion in manufacturing industries and construction: Iron and steel	0.12	0.02	0.00	0%	98%
1A1b	Petroleum refining	0.31	0.24	0.00	0%	98%
3Dc	Farm-level agricultural operations including storage, handling and transport of agricultural products	0.24	0.18	0.00	0%	98%
3B1b	Manure management - Non- dairy cattle	0.09	0.09	0.00	0%	99%
1A3c	Railways	0.06	0.01	0.00	0%	99%
2A1	Cement production	0.21	0.10	0.00	0%	99%
3B4gii	Manure mangement - Broilers	0.04	0.05	0.00	0%	99%
1A2d	Stationary combustion in manufacturing industries and construction: Pulp, Paper and Print	0.09	0.03	0.00	0%	99%
2C1	Iron and steel production	0.09	0.03	0.00	0%	99%
2D3c	Asphalt roofing	0.02	0.02	0.00	0%	99%
3B1a	Manure management - Dairy cattle	0.09	0.03	0.00	0%	99%

1A3biv	Road transport: Mopeds &	0.45	0.07	0.00	00/	4000/
	motorcycles	0.15	0.07	0.00	0%	100%
3B4gi	Manure mangement - Laying hens	0.02	0.03	0.00	0%	100%
3B4f	Manure management - Mules and asses	0.02	0.00	0.00	0%	100%
3B4d	Manure management - Goats	0.11	0.07	0.00	0%	100%
1A3ai(i)	International aviation LTO (civil)	0.01	0.02	0.00	0%	100%
2A3	Glass production	0.03	0.03	0.00	0%	100%
3B4giii	Manure mangement - Turkeys	0.01	0.01	0.00	0%	100%
1A4ai	Commercial/institutional: Stationary	0.11	0.06	0.00	0%	100%
1A3aii(i)	Domestic aviation LTO (civil)	0.00	0.01	0.00	0%	100%
3B4e	Manure management - Horses	0.01	0.00	0.00	0%	100%
3B4a	Manure management - Buffalo	0.00	0.00	0.00	0%	100%
3B4giv	Manure management - Other poultry	0.00	0.00	0.00	0%	100%
5C1bv	Cremation	0.01	0.00	0.00	0%	100%
2D3b	Road paving with asphalt	0.00	0.00	0.00	0%	100%
1A1c	Manufacture of solid fuels and other energy industries	0.00	0.00	0.00	0%	100%
3B3	Manure management - Swine	0.01	0.00	0.00	0%	100%
2A2	Lime production	0.01	0.01	0.00	0%	100%
5A	Biological treatment of waste - Solid waste disposal on land	0.00	0.00	0.00	0%	100%
5C1bi	Industrial waste incineration	0.00	0.00	0.00	0%	100%

Annex II: Uncertainty analysis

Table II-0-1 Uncertainty analysis of NOx emissions

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
NFR sector	Pollutant	Base year emissions	Year t emissions	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emissions in year t	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions	Emission factor quality indicator	Activity data quality indicator
		kt	kt	%	%	%	%	%	%	%	%	%		
1A1a	NOx	70	56	3%	20%	0.2	0.0488	0.0405	0.1370	0.81%	0.58%	1.00%	Α	R
1A1b	NOx	3	5	3%	20%	0.2	0.0041	0.0071	0.0114	0.14%	0.05%	0.15%	Α	R
1A1c	NOx	0	0	3%	200%	2.0	0.0001	0.0002	0.0000	0.04%	0.00%	0.04%	D	R
1A2a	NOx	3	1	3%	200%	2.0	0.0044	0.0029	0.0012	0.58%	0.01%	0.58%	D	R
1A2b	NOx	4	1	3%	200%	2.0	0.0073	0.0032	0.0021	0.64%	0.01%	0.64%	D	R
1A2c	NOx	5	1	3%	200%	2.0	0.0069	0.0047	0.0020	0.94%	0.01%	0.94%	D	R
1A2d	NOx	2	0	3%	200%	2.0	0.0028	0.0020	0.0008	0.40%	0.00%	0.40%	D	R
1A2e	NOx	6	4	3%	200%	2.0	0.0338	0.0016	0.0096	0.32%	0.04%	0.32%	D	R
1A2f	NOx	26	7	3%	200%	2.0	0.0637	0.0185	0.0181	3.71%	0.08%	3.71%	D	R
1A2gvii	NOx	1	2	3%	200%	2.0	0.0190	0.0034	0.0054	0.69%	0.02%	0.69%	D	R
1A2gviii	NOx	18	5	3%	200%	2.0	0.0459	0.0117	0.0130	2.34%	0.06%	2.34%	D	R
1A3ai(i)	NOx	1	2	3%	20%	0.2	0.0016	0.0030	0.0044	0.06%	0.02%	0.06%	Α	R
1A3aii(i)	NOx	0	1	3%	20%	0.2	0.0004	0.0007	0.0013	0.01%	0.01%	0.01%	Α	R
1A3bi	NOx	55	10	3%	20%	0.2	0.0091	0.0508	0.0255	1.02%	0.11%	1.02%	Α	R
1A3bii	NOx	23	13	3%	20%	0.2	0.0114	0.0006	0.0319	0.01%	0.14%	0.14%	Α	R
1A3biii	NOx	76	45	3%	20%	0.2	0.0392	0.0055	0.1101	0.11%	0.47%	0.48%	Α	R

Α	В	С	D	Е	F	G	Н	T	J	K	L	M	N	0
1A3biv	NOx	1	1	3%	20%	0.2	0.0011	0.0022	0.0030	0.04%	0.01%	0.04%	Α	R
1A3bv	NOx	NE	NE											
1A3bvi	NOx	NE	NE											
1A3bvii	NOx	NE	NE											
1A3c	NOx	3	0	3%	200%	2.0	0.0023	0.0028	0.0007	0.56%	0.00%	0.56%	D	R
1A3di(ii)	NOx	NO	NO											
1A3dii	NOx	41	39	3%	200%	2.0	0.3350	0.0388	0.0951	7.77%	0.40%	7.78%	D	R
1A3ei	NOx	NO	0											
1A3eii	NOx	NO	NO											
1A4ai	NOx	2	2	3%	200%	2.0	0.0169	0.0019	0.0048	0.38%	0.02%	0.38%	D	R
1A4aii	NOx	IE	IE											
1A4bi	NOx	5	6	3%	200%	2.0	0.0476	0.0069	0.0135	1.38%	0.06%	1.38%	D	R
1A4bii	NOx	IE	ΙΕ											
1A4ci	NOx	1	1	3%	200%	2.0	0.0068	0.0009	0.0019	0.18%	0.01%	0.18%	D	R
1A4cii	NOx	28	4	3%	200%	2.0	0.0375	0.0285	0.0106	5.70%	0.05%	5.70%	D	R
1A4ciii	NOx	IE	ΙE											
1A5a	NOx	IE	IE											
1A5b	NOx	IE	1											
1B1a	NOx	NA	NA											
1B1b	NOx	NO	NO											
1B1c	NOx	NO	NO											
1B2ai	NOx	NA	NA											
1B2aiv	NOx	IE	IE											
1B2av	NOx	NA	NA											
1B2b	NOx	NA	NA											
1B2c	NOx	IE	IE											
1B2d	NOx	NO	NO											
2A1	NOx	IE	IE											
2A2	NOx	IE	IE											
2A3	NOx	IE	IE											
2A5a	NOx	NA	NA											
2A5b	NOx	NA	NA											

Α	В	С	[)	Е	F	G	Н	1	J	K	L	M	N	0
2A5c	NOx	NE	NE												
2A6	NOx	NO	NO												
2B1	NOx)	0	3%	40%	0.4	0.0003	0.0001	0.0004	0.00%	0.00%	0.00%	В	R
2B2	NOx			0	3%	20%	0.2	0.0001	0.0009	0.0002	0.02%	0.00%	0.02%	Α	R
2B3	NOx	NO	NO												
2B5	NOx	NO	NO												
2B6	NOx	NO	NO												
2B7	NOx	NO	NO												
2B10a	NOx	NA	NA												
2B10b	NOx	NO	NO												
2C1	NOx)	0	3%	40%	0.4	0.0003	0.0003	0.0005	0.01%	0.00%	0.01%	В	R
2C2	NOx)	0	3%	40%	0.4	0.0001	0.0003	0.0001	0.01%	0.00%	0.01%	В	R
2C3	NOx)	0	3%	200%	2.0	0.0016	0.0002	0.0005	0.05%	0.00%	0.05%	D	R
2C4	NOx	NO	NO												
2C5	NOx	NO	NE												
2C6	NOx	NO	NO												
2C7a	NOx	NO	NO												
2C7b	NOx	NO	NO												
2C7c	NOx	NO	NO												
2C7d	NOx	NO	NO												
2D3a	NOx	NA	NA												
2D3b	NOx	NE	NE												
2D3c	NOx	NE	NE												
2D3d	NOx	NA	NA												
2D3e	NOx	NA	NA												
2D3f	NOx	NA	NA											·	
2D3g	NOx	NE	NE												
2D3h	NOx	NA	NA												
2D3i	NOx	NA	NA												
2G	NOx	()	0	5%	200%	2.0	0.0004	0.0002	0.0001	0.03%	0.00%	0.03%	D	R
2H1	NOx	NA	NA												
2H2	NOx	NA	NA												

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
2H3	NOx	NO	NO											
21	NOx	NE	NE											
2J	NOx	NE	NE											
2K	NOx	NA	NA											
2L	NOx	NO	NO											
3B1a	NOx	0	0	5%	200%	2.0	0.0004	0.0001	0.0001	0.01%	0.00%	0.01%	D	R
3B1b	NOx	0	0	5%	200%	2.0	0.0009	0.0001	0.0003	0.02%	0.00%	0.02%	D	R
3B2	NOx	0	0	5%	200%	2.0	0.0009	0.0001	0.0003	0.02%	0.00%	0.02%	D	R
3B3	NOx	0	0	5%	200%	2.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
3B4a	NOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
3B4d	NOx	0	0	5%	200%	2.0	0.0004	0.0000	0.0001	0.00%	0.00%	0.00%	D	R
3B4e	NOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
3B4f	NOx	0	0	5%	200%	2.0	0.0000	0.0001	0.0000	0.01%	0.00%	0.01%	D	R
3B4gi	NOx	0	0	5%	200%	2.0	0.0012	0.0002	0.0003	0.04%	0.00%	0.04%	D	R
3B4gii	NOx	1	1	5%	200%	2.0	0.0062	0.0010	0.0017	0.20%	0.01%	0.20%	D	R
3B4giii	NOx	0	0	5%	200%	2.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
3B4giv	NOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
3B4h	NOx	NA	NA											
3Da1	NOx	17	7	5%	200%	2.0	0.0575	0.0071	0.0163	1.43%	0.12%	1.43%	D	R
3Da2a	NOx	3	2	5%	200%	2.0	0.0180	0.0012	0.0051	0.25%	0.04%	0.25%	D	R
3Da2b	NOx	0	0	5%	200%	2.0	0.0002	0.0000	0.0001	0.00%	0.00%	0.00%	D	R
3Da2c	NOx	NO	NO											
3Da3	NOx	9	8	5%	200%	2.0	0.0654	0.0066	0.0186	1.31%	0.13%	1.32%	D	R
3Da4	NOx	NA	NA											
3Db	NOx	NA	NA											
3Dc	NOx	NA	NA											
3Dd	NOx	NA	NA											
3De	NOx	NA	NA										· · · · · · · · · · · · · · · · · · ·	
3Df	NOx	NA	NA											
3F	NOx	1	1	5%	200%	2.0	0.0053	0.0000	0.0015	0.01%	0.01%	0.01%	D	R
31	NOx	NA	NA											
5A	NOx	NA	NA											

Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0
5B1	NOx	NO	NE											
5B2	NOx	NE	NE											
5C1a	NOx	NO	NO											
5C1bi	NOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1bii	NOx	NO	NO											
5C1biii	NOx	0	0	5%	200%	2.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1biv	NOx	NO	NO											
5C1bv	NOx	NE	0.00											
5C1bvi	NOx	NO	NO											
5C2	NOx	5.28	5.98	5%	200%	2.0	0.0513	0.0073	0.0146	1.45%	0.10%	1.46%	D	
5D1	NOx	NA	NA											
5D2	NOx	IE	ΙE											
5D3	NOx	NO	NO											
5E	NOx	NE	NE											
6A	NOx	NO	NO											
Total	NOx	410	233				37.25%					11.19%		

Table II-0-2 Uncertainty analysis of NMVOC emissions

Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
NFR sector	Pollutant	Base year emissions	Year t emissions	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emissions in year t	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions	Emission factor quality indicator	Activity data quality indicator
		kt	kt	%	%	%	%	%	%	%	%	%		
1A1a	NMVOC	1	1	3%	100%	1.0	0.0092	0.0021	0.0040	0.21%	0.02%	0.21%	С	R
1A1b	NMVOC	6	4	3%	100%	1.0	0.0283	0.0043	0.0122	0.43%	0.05%	0.43%	С	R
1A1c	NMVOC	0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1A2a	NMVOC	0	0	3%	200%	2.0	0.0007	0.0000	0.0002	0.01%	0.00%	0.01%	D	R
1A2b	NMVOC	0	0	3%	200%	2.0	0.0033	0.0005	0.0007	0.09%	0.00%	0.09%	D	R
1A2c	NMVOC	0	0	3%	200%	2.0	0.0012	0.0002	0.0003	0.05%	0.00%	0.05%	D	R
1A2d	NMVOC	0	0	3%	200%	2.0	0.0010	0.0001	0.0002	0.02%	0.00%	0.02%	D	R
1A2e	NMVOC	0	1	3%	200%	2.0	0.0192	0.0037	0.0041	0.74%	0.02%	0.74%	D	R
1A2f	NMVOC	3	1	3%	200%	2.0	0.0178	0.0005	0.0038	0.10%	0.02%	0.11%	D	R
1A2gvii	NMVOC	0	0	3%	200%	2.0	0.0044	0.0008	0.0010	0.15%	0.00%	0.15%	D	R
1A2gviii	NMVOC	3	1	3%	200%	2.0	0.0159	0.0009	0.0034	0.19%	0.01%	0.19%	D	R
1A3ai(i)	NMVOC	0	0	3%	20%	0.2	0.0002	0.0003	0.0003	0.01%	0.00%	0.01%	Α	R
1A3aii(i)	NMVOC	0	0	3%	20%	0.2	0.0000	0.0001	0.0001	0.00%	0.00%	0.00%	Α	R
1A3bi	NMVOC	87	11	3%	20%	0.2	0.0167	0.0820	0.0356	1.64%	0.15%	1.65%	Α	R
1A3bii	NMVOC	29	6	3%	20%	0.2	0.0092	0.0201	0.0196	0.40%	0.08%	0.41%	Α	R
1A3biii	NMVOC	7	2	3%	20%	0.2	0.0034	0.0023	0.0073	0.05%	0.03%	0.06%	Α	R
1A3biv	NMVOC	14	6	3%	20%	0.2	0.0081	0.0010	0.0174	0.02%	0.07%	0.08%	Α	R
1A3bv	NMVOC	33	10	3%	20%	0.2	0.0142	0.0141	0.0303	0.28%	0.13%	0.31%	Α	R
1A3bvi	NMVOC	NE	NE											

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0
1A3bvii	NMVOC	NE	NE											
1A3c	NMVOC	(0	3%	200%	2.0	0.0005	0.0003	0.0001	0.06%	0.00%	0.06%	D	R
1A3di(ii)	NMVOC	NO	NO											
1A3dii	NMVOC	1	1	3%	200%	2.0	0.0170	0.0023	0.0037	0.47%	0.02%	0.47%	D	R
1A3ei	NMVOC	NO	0											
1A3eii	NMVOC	NO	NO											
1A4ai	NMVOC	(0	3%	200%	2.0	0.0029	0.0005	0.0006	0.09%	0.00%	0.09%	D	R
1A4aii	NMVOC	ΙE	IE											
1A4bi	NMVOC	18	13	3%	200%	2.0	0.1890	0.0164	0.0408	3.28%	0.17%	3.28%	D	R
1A4bii	NMVOC	IE	IE											
1A4ci	NMVOC	(3%	200%	2.0	0.0056	0.0012	0.0012	0.23%	0.01%	0.23%	D	R
1A4cii	NMVOC) 2	3%	200%	2.0	0.0327	0.0052	0.0071	1.03%	0.03%	1.03%	D	R
1A4ciii	NMVOC	ΙE	IE			0.0								
1A5a	NMVOC	ΙE	IE			0.0								
1A5b	NMVOC	ΙE	0											
1B1a	NMVOC	11	3	3%	200%	2.0	0.0429	0.0053	0.0093	1.06%	0.04%	1.06%	D	R
1B1b	NMVOC	NO	NO											
1B1c	NMVOC	NO	NO											
1B2ai	NMVOC	(0	3%	200%	2.0	0.0001	0.0002	0.0000	0.04%	0.00%	0.04%	D	R
1B2aiv	NMVOC	IE	IE											
1B2av	NMVOC			3%	200%	2.0	0.0341	0.0007	0.0074	0.15%	0.03%	0.15%	D	R
1B2b	NMVOC	(3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1B2c	NMVOC	IE	IE											
1B2d	NMVOC	NO	NO											
2A1	NMVOC	IE	IE											
2A2	NMVOC	IE	IE											
2A3	NMVOC	IE	IE											
2A5a	NMVOC	NA	NA											
2A5b	NMVOC	NA	NA											
2A5c	NMVOC	NE	NE											
2A6	NMVOC	NO	NO	951	1000					0.000	0.0051			1_
2B1	NMVOC	(0	3%	100%	1.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	С	R

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
2B2	NMVOC	NA	NA											
2B3	NMVOC	NO	NO											
2B5	NMVOC	NO	NO											
2B6	NMVOC	NO	NO											
2B7	NMVOC	NO	NO											
2B10a	NMVOC	C	NO											
2B10b	NMVOC	NO	NO											
2C1	NMVOC	C	0	3%	100%	1.0	0.0005	0.0002	0.0002	0.02%	0.00%	0.02%	С	R
2C2	NMVOC	NE	NE											
2C3	NMVOC	NE	NE											
2C4	NMVOC	NO	NO											
2C5	NMVOC	NO	NE											
2C6	NMVOC	NO	NO											
2C7a	NMVOC	NO	NO											
2C7b	NMVOC	NO	NO											
2C7c	NMVOC	NO	NO											
2C7d	NMVOC	NO	NO											
2D3a	NMVOC	23	20	5%	200%	2.0	0.2913	0.0321	0.0629	6.41%	0.44%	6.43%	D	R
2D3b	NMVOC	C	0	5%	200%	2.0	0.0002	0.0000	0.0000	0.01%	0.00%	0.01%	D	R
2D3c	NMVOC	C	0	5%	200%	2.0	0.0005	0.0001	0.0001	0.02%	0.00%	0.02%	D	R
2D3d	NMVOC	20	15	5%	200%	2.0	0.2227	0.0209	0.0481	4.19%	0.34%	4.20%	D	R
2D3e	NMVOC	4	2	5%	200%	2.0	0.0275	0.0004	0.0059	0.08%	0.04%	0.09%	D	R
2D3f	NMVOC	1	0	5%	200%	2.0	0.0025	0.0005	0.0005	0.10%	0.00%	0.10%	D	R
2D3g	NMVOC	5	6	5%	200%	2.0	0.0883	0.0116	0.0191	2.33%	0.13%	2.33%	D	R
2D3h	NMVOC	2	3	5%	200%	2.0	0.0417	0.0066	0.0090	1.31%	0.06%	1.32%	D	R
2D3i	NMVOC	10	2	5%	200%	2.0	0.0304	0.0067	0.0066	1.33%	0.05%	1.33%	D	R
2G	NMVOC	1	1	5%	200%	2.0	0.0092	0.0007	0.0020	0.15%	0.01%	0.15%	D	R
2H1	NMVOC	NA	NA											
2H2	NMVOC	5	3	5%	200%	2.0	0.0501	0.0043	0.0108	0.87%	0.08%	0.87%	D	R
2H3	NMVOC	NO	NO											
21	NMVOC	NE	NE											
2J	NMVOC	NE	NE											

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
2K	NMVOC	NA	NA											
2L	NMVOC	NO	NO											
3B1a	NMVOC	6	3	5%	200%	2.0	0.0375	0.0004	0.0081	0.08%	0.06%	0.10%	D	R
3B1b	NMVOC	2	2	5%	200%	2.0	0.0294	0.0039	0.0064	0.78%	0.04%	0.79%	D	R
3B2	NMVOC	0	0	5%	200%	2.0	0.0049	0.0006	0.0010	0.12%	0.01%	0.12%	D	R
3B3	NMVOC	0	0	5%	200%	2.0	0.0035	0.0002	0.0008	0.05%	0.01%	0.05%	D	R
3B4a	NMVOC	0	0	5%	200%	2.0	0.0015	0.0003	0.0003	0.06%	0.00%	0.06%	D	R
3B4d	NMVOC	1	1	5%	200%	2.0	0.0093	0.0008	0.0020	0.15%	0.01%	0.15%	D	R
3B4e	NMVOC	NO	NO											
3B4f	NMVOC	NO	NO											
3B4gi	NMVOC	0	0	5%	200%	2.0	0.0069	0.0010	0.0015	0.20%	0.01%	0.20%	D	R
3B4gii	NMVOC	1	2	5%	200%	2.0	0.0259	0.0038	0.0056	0.75%	0.04%	0.75%	D	R
3B4giii	NMVOC	0	0	5%	200%	2.0	0.0018	0.0003	0.0004	0.05%	0.00%	0.05%	D	R
3B4giv	NMVOC	0	0	5%	200%	2.0	0.0002	0.0000	0.0000	0.01%	0.00%	0.01%	D	R
3B4h	NMVOC	0	0											
3Da1	NMVOC	NA	NA											
3Da2a	NMVOC	4	4											
3Da2b	NMVOC	NA	NA											
3Da2c	NMVOC	NA	NA											
3Da3	NMVOC	0	0											
3Da4	NMVOC	NA	NA											
3Db	NMVOC	NA	NA											
3Dc	NMVOC	NA	NA											
3Dd	NMVOC	NA	NA											
3De	NMVOC	3	2	5%	200%	2.0	0.0326	0.0033	0.0070	0.66%	0.05%	0.66%	D	R
3Df	NMVOC	NA	NA											
3F	NMVOC	0	0	5%	200%	2.0	0.0019	0.0001	0.0004	0.02%	0.00%	0.02%	D	R
31	NMVOC	NA	NA											
5A	NMVOC	0	2	5%	200%	2.0	0.0276	0.0059	0.0060	1.18%	0.04%	1.18%	D	R
5B1	NMVOC	NO	NE											
5B2	NMVOC	NE	NE											
5C1a	NMVOC	NO	NO											

Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0
5C1bi	NMVOC	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1bii	NMVOC	NO	NO											
5C1biii	NMVOC	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1biv	NMVOC	NO	NO											
5C1bv	NMVOC	NE	0.00											
5C1bvi	NMVOC	NO	NO											
5C2	NMVOC	1.06	1.20	5%	200%	2.0	0.0174	0.0023	0.0038	0.46%	0.03%	0.46%	D	R
5D1	NMVOC	0.0	0.0	5%	200%	2.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5D2	NMVOC	IE	E											
5D3	NMVOC	NO	NO											
5E	NMVOC	NE	NE											
6A	NMVOC	NO	NO						·				•	
Total	NMVOC	319	138				44.29%	·	·			9.44%		

Table II-0-3 Uncertainty analysis of SOx emissions

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
	Pollutant	Base	Year t	Activity	Emission	Combined	Combined	Type A	Type B	Uncertainty	Uncertainty	Uncertainty	Emission	Activity
		year	emissions	data	factor	uncertainty	uncertainty	sensitivity	sensitivity	in trend in	in trend	introduced	factor	data
		emissions		uncertainty	uncertainty		as % of			national emissions	in national	into the trend in	quality	quality
NFR							total national			introduced	emissions introduced	total	indicator	indicator
sector							emissions			by	by	national		
							in year t			emission	activity	emissions		
							, , , ,			factor	data			
											uncertainty			
		kt	kt	%	%	%	%	%	%	%	%	%		
1A1a	SOx	314	19	3%	20%	0.2	0.0632	0.0359	0.0376	0.72%	0.16%	0.74%	Α	R
1A1b	SOx	20	9	3%	20%	0.2	0.0281	0.0121	0.0167	0.24%	0.07%	0.25%	Α	R
1A1c	SOx	0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1A2a	SOx	7	0	3%	40%	0.4	0.0006	0.0015	0.0002	0.06%	0.00%	0.06%	В	R
1A2b	SOx	10	0	3%	40%	0.4	0.0001	0.0022	0.0000	0.09%	0.00%	0.09%	В	R
1A2c	SOx	8	0	3%	40%	0.4	0.0012	0.0015	0.0004	0.06%	0.00%	0.06%	В	R
1A2d	SOx	4	0	3%	40%	0.4	0.0007	0.0008	0.0002	0.03%	0.00%	0.03%	В	R
1A2e	SOx	12	1	3%	40%	0.4	0.0078	0.0005	0.0023	0.02%	0.01%	0.02%	В	R
1A2f	SOx	35	5	3%	40%	0.4	0.0293	0.0007	0.0088	0.03%	0.04%	0.05%	В	R
1A2gvii	SOx	0	0	3%	40%	0.4	0.0000	0.0001	0.0000	0.00%	0.00%	0.00%	В	R
1A2gviii	SOx	34	1	3%	40%	0.4	0.0046	0.0067	0.0014	0.27%	0.01%	0.27%	В	R
1A3ai(i)	SOx	0	0	3%	40%	0.4	0.0007	0.0002	0.0002	0.01%	0.00%	0.01%	В	R
1A3aii(i)	SOx	0	0	3%	40%	0.4	0.0002	0.0001	0.0001	0.00%	0.00%	0.00%	В	R
1A3bi	SOx	5	0	3%	40%	0.4	0.0003	0.0010	0.0001	0.04%	0.00%	0.04%	В	R
1A3bii	SOx	1	0	3%	40%	0.4	0.0001	0.0003	0.0000	0.01%	0.00%	0.01%	В	R
1A3biii	SOx	13	0	3%	40%	0.4	0.0002	0.0029	0.0001	0.12%	0.00%	0.12%	В	R
1A3biv	SOx	0	0	3%	40%	0.4	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	В	R
1A3bv	SOx	NE	NE											

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
1A3bvi	SOx	NE	NE											
1A3bvii	SOx	NE	NE											
1A3c	SOx	0	0	3%	40%	0.4	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	В	R
1A3di(ii)	SOx	NO	NO											
1A3dii	SOx	28	4	3%	40%	0.4	0.0253	0.0010	0.0076	0.04%	0.03%	0.05%	В	R
1A3ei	SOx	NO	NO											
1A3eii	SOx	NO	NO											
1A4ai	SOx	1	0	3%	40%	0.4	0.0016	0.0002	0.0005	0.01%	0.00%	0.01%	В	R
1A4aii	SOx	IE	IE											
1A4bi	SOx	10		3%	40%	0.4	0.0195	0.0036	0.0058	0.14%	0.02%	0.14%	В	R
1A4bii	SOx	IE	ΙE											
1A4ci	SOx	0	0	3%	40%	0.4	0.0010	0.0002	0.0003	0.01%	0.00%	0.01%	В	R
1A4cii	SOx	5		3%	40%	0.4	0.0000	0.0011	0.0000	0.05%	0.00%	0.05%	В	R
1A4ciii	SOx	ΙE	IE											
1A5a	SOx	IE	IE											
1A5b	SOx	IE	0											
1B1a	SOx	NA	NA											
1B1b	SOx	NO	NO											
1B1c	SOx	NO	NO											
1B2ai	SOx	NE	NE											
1B2aiv	SOx	IE	IE											
1B2av	SOx	NE	NE											
1B2b	SOx	NE	NE											
1B2c	SOx	IE	IE											
1B2d	SOx	NO	NO											
2A1	SOx	IE	IE											
2A2	SOx	IE	IE											
2A3	SOx	IE	IE											
2A5a	SOx	NA	NA											
2A5b	SOx	NA	NA											
2A5c	SOx	NE	NE											
2A6	SOx	NO	NO											

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
2B1	SOx	NA	NA											
2B2	SOx	NA	NA											
2B3	SOx	NO	NO											
2B5	SOx	NO	NO											
2B6	SOx	NO	NO											
2B7	SOx	NO	NO											
2B10a	SOx	2	0	3%	20%	0.2	0.0005	0.0002	0.0003	0.00%	0.00%	0.00%	Α	R
2B10b	SOx	NO	NO											
2C1	SOx	0	0	3%	100%	1.0	0.0015	0.0002	0.0002	0.02%	0.00%	0.02%	С	R
2C2	SOx	1	0	3%	100%	1.0	0.0020	0.0000	0.0002	0.00%	0.00%	0.00%	С	R
2C3	SOx	1	1	3%	200%	2.0	0.0273	0.0015	0.0016	0.30%	0.01%	0.30%	D	R
2C4	SOx	NO	NO											
2C5	SOx	NO	0											
2C6	SOx	NO	NO											
2C7a	SOx	NO	NO											
2C7b	SOx	NO	NO											
2C7c	SOx	NO	NO											
2C7d	SOx	NO	NO											
2D3a	SOx	NA	NA											
2D3b	SOx	NE	NE											
2D3c	SOx	NA	NA											
2D3d	SOx	NA	NA											
2D3e	SOx	NA	NA											
2D3f	SOx	NA	NA											
2D3g	SOx	NE	NE											
2D3h	SOx	NA	NA											
2D3i	SOx	NA	NA											
2G	SOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
2H1	SOx	NA	NA											
2H2	SOx	NA	NA										·	
2H3	SOx	NO	NO										·	
21	SOx	NE	NE											

Α	В	С	D	Е	F	G	Н	T	J	K	L	M	N	0
2J	SOx	NE	NE											
2K	SOx	NA	NA											
2L	SOx	NO	NO											
3B1a	SOx	NA	NA											
3B1b	SOx	NA	NA											
3B2	SOx	NA	NA											
3B3	SOx	NA	NA											
3B4a	SOx	NA	NA											
3B4d	SOx	NA	NA											
3B4e	SOx	NA	NA											
3B4f	SOx	NA	NA											
3B4gi	SOx	NA	NA											
3B4gii	SOx	NA	NA											
3B4giii	SOx	NA	NA											
3B4giv	SOx	NA	NA											
3B4h	SOx	NA	NA											
3Da1	SOx	NA	NA											
3Da2a	SOx	NA	NA											
3Da2b	SOx	NA	NA											
3Da2c	SOx	NA	NA											
3Da3	SOx	NA	NA											
3Da4	SOx	NA	NA											
3Db	SOx	NA	NA											
3Dc	SOx	NA	NA											
3Dd	SOx	NA	NA											
3De	SOx	NA	NA											
3Df	SOx	NA	NA											
3F	SOx	0	0	5%	200%	2.0	0.0044	0.0002	0.0003	0.04%	0.00%	0.04%	D	R
31	SOx	NA	NA											
5A	SOx	NA	NA											
5B1	SOx	NO	NE											
5B2	SOx	NE	NE											

Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0
5C1a	SOx	NO	NO											
5C1bi	SOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1bii	SOx	NO	NO											
5C1biii	SOx	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1biv	SOx	NO	NO											
5C1bv	SOx	NE	0.00											
5C1bvi	SOx	NO	NO											
5C2	SOx	0.20	0.23	5%	200%	2.0	0.0074	0.0004	0.0004	0.08%	0.00%	0.08%	D	R
5D1	SOx	NA	NA											
5D2	SOx	IE	IE											
5D3	SOx	NO	NO											
5E	SOx	NE	NE											
6A	SOx	NO	NO							·				
Total		512	62				8.71%			·		0.91%		

Table II-0-4 Uncertainty analysis of NH3 emissions

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0
NFR sector	Pollutant	Base year emissions	Year t emissions	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of total national emissions in year t	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national emissions introduced by emission factor	Uncertainty in trend in national emissions introduced by activity data uncertainty	Uncertainty introduced into the trend in total national emissions	Emission factor quality indicator	Activity data quality indicator
		kt	kt	%	%	%	%	%	%	%	%	%		
1A1a	NH3	NE	NE											<u> </u>
1A1b	NH3	NE	NE											ļ
1A1c	NH3	NE	NE											
1A2a	NH3	NE	NE											
1A2b	NH3	NA	NA											
1A2c	NH3	NA	NA											
1A2d	NH3	NA	0											
1A2e	NH3	NE	0											
1A2f	NH3	NA	0											
1A2gvii	NH3	0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1A2gviii	NH3	0	0											
1A3ai(i)	NH3	NE	NE											
1A3aii(i)	NH3	NE	NE											
1A3bi	NH3	0	1	3%	20%	0.2	0.0035	0.0111	0.0115	0.22%	0.05%	0.23%	A	R
1A3bii	NH3	0	0	3%	20%	0.2	0.0004	0.0012	0.0013	0.02%	0.01%	0.02%	Α	R
1A3biii	NH3	2	0	3%	20%	0.2	0.0001	0.0118	0.0003	0.24%	0.00%	0.24%	A	R
1A3biv	NH3	0	0	3%	20%	0.2	0.0000	0.0001	0.0002	0.00%	0.00%	0.00%	Α	R
1A3bv	NH3	NE	NE											
1A3bvi	NH3	NE	NE											

Α	В	С		D	Е	F	G	Н	1	J	K	L	M	N	0
1A3bvii	NH3	NE		NE											
1A3c	NH3		0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1A3di(ii)	NH3	NO		NO											
1A3dii	NH3	NE		NE											
1A3ei	NH3	NO		NE											
1A3eii	NH3	NO		NO											
1A4ai	NH3	NA		NA											
1A4aii	NH3	IE		ΙE											
1A4bi	NH3		2	2	3%	200%	2.0	0.0492	0.0016	0.0165	0.33%	0.07%	0.34%	D	R
1A4bii	NH3	IE		IE											
1A4ci	NH3	NO		0											
1A4cii	NH3		0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.01%	0.00%	0.01%	D	R
1A4ciii	NH3	IE		ΙE											
1A5a	NH3	IE		ΙE											
1A5b	NH3	IE		NE											
1B1a	NH3	NA		NA											
1B1b	NH3	NO		NO											
1B1c	NH3	NO		NO											
1B2ai	NH3	NA		NA											
1B2aiv	NH3		0	0	3%	200%	2.0	0.0008	0.0001	0.0003	0.03%	0.00%	0.03%	D	R
1B2av	NH3	NA		NA											
1B2b	NH3	NA	_	NA											
1B2c	NH3	IE		IE .											
1B2d	NH3	NO		NO											
2A1	NH3	IE		IE											
2A2	NH3	IE		IE											
2A3	NH3	IE		IE											
2A5a	NH3	NA		NA											
2A5b	NH3	NA		NA											
2A5c	NH3	NE		NE											
2A6	NH3	NO		NO	001	4000		0.000 /	2 2222	0.0001	0.000/	0.000/	0.000/		+
2B1	NH3		0	0	3%	100%	1.0	0.0001	0.0000	0.0001	0.00%	0.00%	0.00%	С	R

Α	В	С	D	Е	F	G	Н	T	J	K	L	M	N	0
2B2	NH3	NA	NA											
2B3	NH3	NO	NO											
2B5	NH3	NO	NO											
2B6	NH3	NO	NO											
2B7	NH3	NO	NO											
2B10a	NH3	NE	2											
2B10b	NH3	NO	NO											
2C1	NH3	NE	NE											
2C2	NH3	NE	NE											
2C3	NH3	NE	NE											
2C4	NH3	NO	NO											
2C5	NH3	NO	NE											
2C6	NH3	NO	NO											
2C7a	NH3	NO	NO											
2C7b	NH3	NO	NO											
2C7c	NH3	NO	NO											
2C7d	NH3	NO	NO											
2D3a	NH3	NA	NA											
2D3b	NH3	NA	NA											
2D3c	NH3	NA	NA											
2D3d	NH3	NA	NA											
2D3e	NH3	NA	NA											
2D3f	NH3	NA	NA											
2D3g	NH3	NE	NE											
2D3h	NH3	NA	NA											
2D3i	NH3	NA	NA											
2G	NH3	0	0	5%	200%	2.0	0.0032	0.0021	0.0011	0.41%	0.01%	0.41%	D	R
2H1	NH3	NA	NA											
2H2	NH3	NA	NA											
2H3	NH3	NO	NO											
21	NH3	NE	NE											
2J	NH3	NE	NE											

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
2K	NH3	NA	NA											
2L	NH3	NO	NO											
3B1a	NH3	5	2	5%	200%	2.0	0.0638	0.0164	0.0214	3.29%	0.15%	3.29%	D	R
3B1b	NH3	3	4	5%	200%	2.0	0.1093	0.0159	0.0367	3.17%	0.26%	3.19%	D	R
3B2	NH3	4	4	5%	200%	2.0	0.1146	0.0135	0.0384	2.69%	0.27%	2.70%	D	R
3B3	NH3	4	3	5%	200%	2.0	0.0827	0.0004	0.0277	0.08%	0.20%	0.21%	D	R
3B4a	NH3	0	0	5%	200%	2.0	0.0012	0.0004	0.0004	0.07%	0.00%	0.07%	D	R
3B4d	NH3	3	2	5%	200%	2.0	0.0566	0.0008	0.0190	0.16%	0.13%	0.21%	D	R
3B4e	NH3	NO	NO											
3B4f	NH3	NO	NO											
3B4gi	NH3	2	3	5%	200%	2.0	0.0957	0.0157	0.0321	3.14%	0.23%	3.15%	D	R
3B4gii	NH3	3	3	5%	200%	2.0	0.1071	0.0176	0.0359	3.52%	0.25%	3.53%	D	R
3B4giii	NH3	0	0	5%	200%	2.0	0.0126	0.0021	0.0042	0.42%	0.03%	0.42%	D	R
3B4giv	NH3	0	0	5%	200%	2.0	0.0025	0.0004	0.0008	0.08%	0.01%	0.08%	D	R
3B4h	NH3	5	2											
3Da1	NH3	30	11	5%	200%	2.0	0.3476	0.0906	0.1166	18.12%	0.82%	18.14%	D	R
3Da2a	NH3	17	13	5%	200%	2.0	0.4168	0.0182	0.1398	3.64%	0.99%	3.77%	D	R
3Da2b	NH3	0	0	5%	200%	2.0	0.0022	0.0003	0.0007	0.05%	0.01%	0.05%	D	R
3Da2c	NH3	NO	NO											
3Da3	NH3	15	11	5%	200%	2.0	0.3410	0.0127	0.1144	2.53%	0.81%	2.66%	D	R
3Da4	NH3	NA	NA											
3Db	NH3	NA	NA											
3Dc	NH3	NA	NA											
3Dd	NH3	NA	NA											
3De	NH3	NA	NA											
3Df	NH3	NA	NA											
3F	NH3	1	1	5%	200%	2.0	0.0201	0.0010	0.0067	0.21%	0.05%	0.21%	D	R
31	NH3	NO	NO											
5A	NH3	NE	NE											
5B1	NH3	NO	0											
5B2	NH3	0	0	5%	200%	2.0	0.0155	0.0052	0.0052	1.04%	0.04%	1.04%	D	R
5C1a	NH3	NO	NO											

Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0
5C1bi	NH3	NE	NE											
5C1bii	NH3	NO	NO											
5C1biii	NH3	NE	NE											
5C1biv	NH3	NO	NO											
5C1bv	NH3	NE	NE											
5C1bvi	NH3	NO	NO											
5C2	NH3	NE	NE											
5D1	NH3	NE	NE											
5D2	NH3	IE	IE											
5D3	NH3	NO	NO											
5E	NH3	NA	NA											
6A	NH3	NO	NO											
Total		96	64				68.84%					20.07%		

Table II-0-5 Uncertainty analysis of PM2.5 emissions

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
	Pollutant	Base year emissions	Year t emissions	Activity data uncertainty	Emission factor uncertainty	Combined uncertainty	Combined uncertainty as % of	Type A sensitivity	Type B sensitivity	Uncertainty in trend in national	Uncertainty in trend in national	Uncertainty introduced into	Emission factor quality	Activity data quality
NFR sector		Simosiono		uncortainty	uncontainty		total national emissions in year t			emissions introduced by emission	emissions introduced by activity	the trend in total national emissions	indicator	indicator
		kt	kt	%	%	%	%	%	%	factor %	data uncertainty %	%		
1A1a	PM2.5	12	1	3%	200%	2.0	0.0603	0.0970	0.0180	19.41%	0.08%	19.41%	D	R
1A1b	PM2.5	0	0	3%	200%	2.0	0.0132	0.0009	0.0039	0.18%	0.02%	0.18%	D	R
1A1c	PM2.5	0	0	3%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
1A2a	PM2.5	0	0	3%	200%	2.0	0.0009	0.0009	0.0003	0.18%	0.00%	0.18%	D	R
1A2b	PM2.5	0	0	3%	200%	2.0	0.0003	0.0014	0.0001	0.28%	0.00%	0.28%	D	R
1A2c	PM2.5	0	0	3%	200%	2.0	0.0014	0.0031	0.0004	0.63%	0.00%	0.63%	D	R
1A2d	PM2.5	0	0	3%	200%	2.0	0.0015	0.0004	0.0005	0.08%	0.00%	0.08%	D	R
1A2e	PM2.5	0	1	3%	200%	2.0	0.0354	0.0078	0.0106	1.55%	0.04%	1.55%	D	R
1A2f	PM2.5	0	1	3%	200%	2.0	0.0292	0.0082	0.0087	1.65%	0.04%	1.65%	D	R
1A2gvii	PM2.5	0	0	3%	200%	2.0	0.0061	0.0009	0.0018	0.19%	0.01%	0.19%	D	R
1A2gviii	PM2.5	2	1	3%	200%	2.0	0.0311	0.0084	0.0093	1.68%	0.04%	1.68%	D	R
1A3ai(i)	PM2.5	0	0	3%	20%	0.2	0.0001	0.0002	0.0003	0.00%	0.00%	0.00%	Α	R
1A3aii(i)	PM2.5	0	0	3%	20%	0.2	0.0000	0.0001	0.0001	0.00%	0.00%	0.00%	Α	R
1A3bi	PM2.5	1	0	3%	20%	0.2	0.0004	0.0085	0.0011	0.17%	0.00%	0.17%	Α	R
1A3bii	PM2.5	0	0	3%	20%	0.2	0.0021	0.0056	0.0063	0.11%	0.03%	0.12%	Α	R
1A3biii	PM2.5	4	1	3%	20%	0.2	0.0062	0.0226	0.0185	0.45%	0.08%	0.46%	Α	R
1A3biv	PM2.5	0	0	3%	20%	0.2	0.0004	0.0003	0.0012	0.01%	0.01%	0.01%	Α	R
1A3bv	PM2.5	NE	NE											<u> </u>

Α	В	С	D	Е	F	G	Н	T.	J	K	L	M	N	0
1A3bvi	PM2.5	1	1	3%	20%	0.2	0.0049	0.0090	0.0146	0.18%	0.06%	0.19%	Α	R
1A3bvii	PM2.5	0	0	3%	20%	0.2	0.0022	0.0040	0.0064	0.08%	0.03%	0.09%	Α	R
1A3c	PM2.5	0	0	3%	200%	2.0	0.0004	0.0005	0.0001	0.10%	0.00%	0.10%	D	R
1A3di(ii)	PM2.5	NO	NO											
1A3dii	PM2.5	1	2	3%	200%	2.0	0.1123	0.0193	0.0336	3.85%	0.14%	3.85%	D	R
1A3ei	PM2.5	NO	0											
1A3eii	PM2.5	NO	NO											
1A4ai	PM2.5	0	0	3%	200%	2.0	0.0032	0.0001	0.0010	0.02%	0.00%	0.02%	D	R
1A4aii	PM2.5	IE	IE											
1A4bi	PM2.5	23	17	3%	200%	2.0	0.9153	0.0415	0.2739	8.31%	1.16%	8.39%	D	R
1A4bii	PM2.5	IE	IE											
1A4ci	PM2.5	0	0	3%	200%	2.0	0.0108	0.0029	0.0032	0.57%	0.01%	0.57%	D	R
1A4cii	PM2.5	2	0	3%	200%	2.0	0.0148	0.0120	0.0044	2.39%	0.02%	2.39%	D	R
1A4ciii	PM2.5	IE	IE			-								
1A5a	PM2.5	IE	ΙE											
1A5b	PM2.5	IE	NE											
1B1a	PM2.5	0	0	3%	200%	2.0	0.0050	0.0018	0.0015	0.35%	0.01%	0.35%	D	R
1B1b	PM2.5	NO	NO											
1B1c	PM2.5	NO	NO											
1B2ai	PM2.5	NA	NA											
1B2aiv	PM2.5	IE	IE											
1B2av	PM2.5	NA	NA											
1B2b	PM2.5	NA	NA											
1B2c	PM2.5	IE	IE											
1B2d	PM2.5	NO	NO											
2A1	PM2.5	0	0	3%	200%	2.0	0.0053	0.0005	0.0016	0.10%	0.01%	0.10%	D	R
2A2	PM2.5	0	0	3%	100%	1.0	0.0002	0.0000	0.0001	0.00%	0.00%	0.00%	С	R
2A3	PM2.5	0	0	3%	200%	2.0	0.0016	0.0002	0.0005	0.03%	0.00%	0.03%	D	R
2A5a	PM2.5	NE	0											
2A5b	PM2.5	NE	1											
2A5c	PM2.5	NE	NE											
2A6	PM2.5	NO	NO											

Α	В	С	D	Е	F	G	Н	T.	J	K	L	M	N	0
2B1	PM2.5	NA	NA											
2B2	PM2.5	NA	NA											
2B3	PM2.5	NO	NO											
2B5	PM2.5	NO	NO											
2B6	PM2.5	NO	NO											
2B7	PM2.5	NO	NO											
2B10a	PM2.5	0	0	3%	100%	1.0	0.0030	0.0018	0.0018	0.18%	0.01%	0.18%	С	R
2B10b	PM2.5	NO	NO											
2C1	PM2.5	0	0	3%	100%	1.0	0.0009	0.0003	0.0005	0.03%	0.00%	0.03%	С	R
2C2	PM2.5	0	0	3%	100%	1.0	0.0006	0.0029	0.0003	0.29%	0.00%	0.29%	С	R
2C3	PM2.5	0	0	3%	200%	2.0	0.0062	0.0010	0.0018	0.19%	0.01%	0.19%	D	R
2C4	PM2.5	NO	NO											
2C5	PM2.5	NO	0											
2C6	PM2.5	NO	NO											
2C7a	PM2.5	NO	NO											
2C7b	PM2.5	NO	NO											
2C7c	PM2.5	NO	NO											
2C7d	PM2.5	NO	NO											
2D3a	PM2.5	NE	NE											
2D3b	PM2.5	0	0	5%	200%	2.0	0.0001	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
2D3c	PM2.5	0	0	5%	200%	2.0	0.0013	0.0003	0.0004	0.06%	0.00%	0.06%	D	R
2D3d	PM2.5	NA	NA											
2D3e	PM2.5	NE	NE											
2D3f	PM2.5	NE	NE											
2D3g	PM2.5	NE	NE											
2D3h	PM2.5	NE	NE											
2D3i	PM2.5	0	0	5%	200%	2.0	0.0248	0.0036	0.0074	0.71%	0.05%	0.72%	D	R
2G	PM2.5	3	1	5%	200%	2.0	0.0374	0.0178	0.0112	3.56%	0.08%	3.56%	D	R
2H1	PM2.5	NA	NA											
2H2	PM2.5	NE	NE											
2H3	PM2.5	NO	NO											
21	PM2.5	NE	NE											

Α	В	С	D	Е	F	G	Н	T	J	K	L	M	N	0
2J	PM2.5	NE	NE											
2K	PM2.5	NA	NA											
2L	PM2.5	NO	NO											
3B1a	PM2.5	0	0	5%	200%	2.0	0.0018	0.0003	0.0005	0.06%	0.00%	0.06%	D	R
3B1b	PM2.5	0	0	5%	200%	2.0	0.0049	0.0006	0.0015	0.12%	0.01%	0.12%	D	R
3B2	PM2.5	0	0	5%	200%	2.0	0.0099	0.0012	0.0030	0.25%	0.02%	0.25%	D	R
3B3	PM2.5	0	0	5%	200%	2.0	0.0002	0.0000	0.0001	0.00%	0.00%	0.00%	D	R
3B4a	PM2.5	0	0	5%	200%	2.0	0.0002	0.0000	0.0000	0.01%	0.00%	0.01%	D	R
3B4d	PM2.5	0	0	5%	200%	2.0	0.0041	0.0002	0.0012	0.04%	0.01%	0.04%	D	R
3B4e	PM2.5	0	0											
3B4f	PM2.5	0	0											
3B4gi	PM2.5	0	0	5%	200%	2.0	0.0016	0.0003	0.0005	0.05%	0.00%	0.05%	D	R
3B4gii	PM2.5	0	0	5%	200%	2.0	0.0029	0.0005	0.0009	0.10%	0.01%	0.10%	D	R
3B4giii	PM2.5	0	0	5%	200%	2.0	0.0007	0.0001	0.0002	0.02%	0.00%	0.02%	D	R
3B4giv	PM2.5	0	0	5%	200%	2.0	0.0002	0.0000	0.0001	0.01%	0.00%	0.01%	D	R
3B4h	PM2.5	NA	NA											
3Da1	PM2.5	NA	NA											
3Da2a	PM2.5	NA	NA											
3Da2b	PM2.5	NA	NA											
3Da2c	PM2.5	NA	NA											
3Da3	PM2.5	NA	NA											
3Da4	PM2.5	NA	NA											
3Db	PM2.5	NA	NA											
3Dc	PM2.5	0	0	5%	200%	2.0	0.0099	0.0006	0.0030	0.13%	0.02%	0.13%	D	R
3Dd	PM2.5	NA	NA											
3De	PM2.5	NA	NA											
3Df	PM2.5	NA	NA											
3F	PM2.5	3	2	5%	200%	2.0	0.0838	0.0010	0.0251	0.19%	0.18%	0.26%	D	R
31	PM2.5	NA	NA											
5A	PM2.5	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5B1	PM2.5	NO	NE											
5B2	PM2.5	NE	NE											

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0
5C1a	PM2.5	NO	NO											
5C1bi	PM2.5	0	0	5%	200%	2.0	0.0000	0.0000	0.0000	0.00%	0.00%	0.00%	D	R
5C1bii	PM2.5	NO	NO											
5C1biii	PM2.5	NE	NE											
5C1biv	PM2.5	NO	NO											
5C1bv	PM2.5	0	0.00	5%	200%	2.0	0.0003	0.0000	0.0001	0.01%	0.00%	0.01%	D	R
5C1bvi	PM2.5	NO	NO											
5C2	PM2.5	4.88	5.52	5%	200%	2.0	0.3053	0.0430	0.0914	8.61%	0.65%	8.63%	D	R
5D1	PM2.5	NE	NE											
5D2	PM2.5	IE	IE											
5D3	PM2.5	NO	NO											
5E	PM2.5	NE	0											
6A	PM2.5	NO	NO		·									
Total		60	36		·		97.99%					23.77%		